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Abstract—The main goal of traffic surveillance systems (TSSs)
is to extract useful traffic information by analyzing signals from
cameras. This paper presents a system for vehicle detection
and classification from static pole-mounted roadside surveillance
cameras on busy streets in the presence of different kinds of
vehicles. There has been considerable research to accommodate
this subject since the 90s; but most studies have been only
carried out in developed countries where traffic infrastructures
are built around automobiles, whereas in developing countries,
motorbikes are dominant. This paper proposes a method that
robustly detects, classifies and counts vehicles into three classes:
light (motorbikes, bikes, tricycles), medium (cars, sedans, SUV),
heavy vehicle (trucks, buses), and a novel tracking algorithm
designed to enable classification by majority voting to cope with
motorbikes’ sudden changes in direction. Extensive experiments
with real-world data to evaluate the system’s performance have
shown promising results: a detection rate of 95.3% in daytime
scenes.

Index Terms—Vehicle detection, vehicle classification, vehicle
tracking, real-time traffic surveillance system.

I. INTRODUCTION

In recent years, there have been increasing interests in

the area of traffic surveillance system (TSS), especially in

Vietnam and other developing countries. The main goal of

a TSS is to gain an understanding of traffic situations through

an extraction of information (counts, speed, vehicle type,

and density) from sensors’ signals. So far, many studies

have been carried out using cutting-edge TSSs. However, the

detectors in use are costly, bulky and are difficult to maintain,

while still providing limited information [1]. Perhaps for

those reasons, video-based TSSs are becoming more popular.

They are capable of providing more information about traffic

conditions and can adapt to a wide range of view condition.

They are characterized as low cost, less disruptive and more

maintainable than others.

Last decade has seen a massive amount of research into

image analysis for vehicle classification. In early work, Wang

et al. [2] performed studies on vehicle classification at intersec-

tions with a 2-step algorithm. They first validate vehicle using

the object weight, height, aspect ratio, area criteria, extracting

the texture features using the HOG descriptor; then a multi-

class SVM classifier is trained to identify vehicle types. Chen

and Ellis [3] combined a set of measurement features with a

pyramid of HOG features (both edge and intensity) to classify

vehicles into four categories: car, van, bus, and motorbike.

However, in their experiments, motorbikes only contribute

small sample sizes. Regarding supervised approaches with

neural networks, Dong et al. [4] proposed a vehicle classi-

fication method using a semi-supervised convolution neural

network on vehicle frontal view images. Hao et al. [5] used

extreme learning machine (ELM) on invariant moments and

horizontal edge features to classify vehicles into sedan, bus,

and van truck. Despite the amount of literature, vehicle clas-

sification has not yet received much attention concerning 2-

wheeled vehicles. This may be because of the lack of scenarios

where previous studies took place.

In this paper, we present a multi-class vehicle detection

and classification algorithm that works robustly in daytime

surveillance scenes, and is explicitly designed to cope with

the complex behavior of 2-wheeled motorized vehicles. In

summary, the main contributions of this work are: 1) an

approach utilizing decision tree analysis on measurement-

based features (dimension ratio, density ratio, and size) to

achieve high levels of vehicle classification performance; and

2) a new tracking method to demonstrate the effectiveness of

vehicle labeling in chaos traffic scenes.

The paper is organized as follows: Section II-A presents

a method for vehicle detection. Section II-B and Section

II-C respectively describe our proposed method of feature

extraction and vehicle classification. Our new approach for

vehicle tracking is then characterizes in Section II-D. The rest

of the paper includes experiment results and discussions.

II. PROPOSED METHOD

A. Vehicle Detection

The effectiveness of the background model is evaluated

through a binary foreground mask in which moving objects are

marked as white blobs. However, in urban traffic environment,

a real background is not always available and can be influenced
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(a) (b) (c) (d)

Fig. 1. Illustration of vehicle detection process. (a) Original image. (b) Foreground image from background subtraction process. (c) Extract vehicles’ contours
inside observation zone. (d) Extracted vehicle images.

by objects being introduced or removed from the scene, slow-

moving or stationary objects, camera vibration (e.g. strong

wind, heavy vehicles). In order to account for these problems,

we adopt the background subtraction algorithm proposed by

Nguyen et al. [6] and Ha et al. [7] to extract moving objects.

The novelty of this technique is the application of an entropy

function (EF) in a Gaussian mixture model (GMM) and

disorder removal framework to neglect the disorder frames

(DF), thus, selecting proper images to model the background

and to detect foreground components.

With the constructed background, moving foreground ob-

jects are extracted with pre-processing and filtering operations,

which aim to remove shadow [8], on-road reflections in rainy

scenes [9], and noises are executed to refine the vehicles’

images. Then objects’ contours residing inside observation

zones are extracted using [10]) as shown in Fig. 1.

B. Feature Extraction

From extricated vehicles, we obtain the set of vehicle

candidates, with a list of measurement features that represent

the ith vehicle at the kth frame, as described in Table I.

TABLE I
VEHICLE MEASUREMENT FEATURES

Symbol Description

Bh
i
(k) Height of vehicle’s bounding box

Bw
i
(k) Width of vehicle’s bounding box

Eh
i
(k) Major axis of vehicle’ bounding ellipse

Ew
i
(k) Minor axis of vehicle’s bounding ellipse

PE
i
(k) Total pixels inside vehicle’s bounding ellipse

PC
i
(k) Total pixels inside vehicle’s contour (vehicle area)

PCH
i

(k) Total pixels inside vehicle’s Convex Hull contour

LC
i
(k) Perimeter of vehicle’s contour

Rdi
i
(k) Dimension ratio of vehicle

Rde
i
(k) Density ratio of vehicle

Working with simple features makes a solution more com-

petitive in terms of computation and storage. Thus, we select

an optimal feature subset with principle component analysis

(PCA) as we discard variables that gives little extra infor-

mation. Namely, we focus on reducing the original variables

into a lower number of non-correlated synthesized variables,

then mathematically determining the linear combinations of

variables which preserve the information of data. Figure 2

illustrates the variance (eigenvalue) percentages suggesting

how much information each of the 10 principle components
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Fig. 2. Scree plot of principle components using variances.

(PCs) can describe. We can see that the first three PCs accounts

for 98.5% of the total variance, while the rest accumulate for

just a small portion.

Table II summarizes the loading that each variable con-

tributes to the first three PCs. We then observe that contour

area contributes the most to PC1, dimension ratio contributes

the most to PC2, and density ratio contributes the most to PC3.

So the feature subset that is enough to account for 98.5% of

the total variance can be:

• 1 – dimension ratio, Rdi
i (k).

• 2 – density ratio, Rde
i (k).

• 3 – contour area/vehicle size, PC
i (k).

Blob analysis then identifies non-vehicle objects and re-

moves them. As the camera is mounted on an elevated platform

looking straight down on the road, the rotation angle E◦ of a

vehicle’ bounding ellipse with respect to the horizontal plane is

approximately 90◦. So if the ith object satisfies one condition,

it is considered a vehicle candidate: 85◦ ≤ E◦

i (k) ≤ 105◦,

where the lower and upper values are empirically selected.

TABLE II
SUMMARY OF VARIABLES’ LOADINGS TO THE FIRST THREE PCS.

Variable PC1 PC2 PC3

PE
i
(k) 0.3345422 -0.1562512 0.05551648

Eh
i
(k) 0.3278795 -0.2204513 0.17096738

Ew
i
(k) 0.3351614 0.148366 -0.16941252

R
di

i
(k) 0.2433402 0.6454741 -0.51207482

R
de

i
(k) 0.2356265 0.5603481 0.77562315

PCH
i

(k) 0.3361558 -0.1767915 0.01284477

LC
i
(k) 0.3283365 -0.1848338 -0.11267756

PC

i
(k) 0.3375633 -0.126193 0.05073695

Bh
i
(k) 0.3271465 -0.2803197 0.05786459

Bw
i
(k) 0.3342598 0.1201035 -0.23746961
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C. Vehicle Classification

The vehicle classification algorithm is the main focus

of this paper, which is a extension of our prior work [11],

[12]. In our algorithm, vehicles are classified into three classes:

• Class 1: Light vehicles (motorbikes and bicycles).

• Class 2: Medium vehicles (cars, sedans and SUVs).

• Class 3: Heavy vehicle (trucks and buses).

Three observations can be made: 1) light vehicles have high

eccentricity bounding ellipses that resembles human shapes; 2)

the bounding ellipses of heavy vehicles share these traits but

with larger sizes; 3) medium vehicles’ shapes are squarer than

others and they cover extra pixels belonging to the background.

Vehicle size can be obtained by counting the total pixels of

the vehicle. The eccentricity of an ellipse can be measured

by its ratio between the minor and major axis, or namely,

by a dimension ratio, Rdi. In order to implement the third

observation, we propose a density ratio, Rde, which is the

ratio of total pixels of the vehicle and the total pixels of the

bounding ellipse:

Rdi
i (k) =

Ew
i (k)

Eh
i (k))

(1)

Rde
i (k) =

PC
i (k)

PE
i (k)

(2)

Several experiments have been performed, in each of which

we obtain the distribution of three vehicle classes on a 3-

axis scatter plot just like the one shown in Fig. 3. The results

further confirm our observations as we can conclude that

light vehicles and medium vehicles are separated along the

Rdi–Rde plane, not to mention that medium vehicles are

usually double in size. Meanwhile, heavy vehicles are scattered

across the Rdi–Rde plane. A possible explanation is that,

Fig. 3. The distribution of vehicles for dataset PVD1. Light, medium and
heavy vehicles are shown as green, yellow and blue dots respectively.

for instance, 16-seat buses and delivery trucks have similar

shapes to medium vehicles whose bounding ellipses have high

eccentricity values; while 50-seat buses and trailers, because

of their length, have thinner bounding ellipses, and thus share

traits with light vehicles [13]. However, their sizes distinguish

them from other classes.

Once vehicles’ features are obtained, we use the decision

tree theory proposed by [14] to produce the labeling rules.

Decision tree builds classification models in the form of a

tree structure which can easily be transformed to a set of

rules by mapping from the root node to the leaf nodes one

by one. The core algorithm for building decision trees called

ID3 employs entropy and information gain to construct the tree

in a top-down approach. From a root node, data is partitioned

into smaller and smaller subsets that contain instances with

similar values (homogenous). ID3 algorithm uses entropy to

calculate the homogeneity of a sample. If the sample is

completely homogeneous the entropy is zero and if the sample

is equally divided it has entropy of one. The information

gain is calculated based on the decrease in entropy after a

dataset is split on an attribute. The attribute maximizing the

information gain the most is selected as the root node. The

value of the attribute at which this gain occurs is obviously the

split point. This partitioning process may continue along the

same attribute to yield smaller and smaller subsets of higher

purity. Fig. 4 shows the decision tree of dataset PVD1.

In our intensive analysis, K-fold cross validation is applied

to check the integrity of the decision model. The k-fold cross

validation method involves splitting the dataset into k-subsets.

For each subset, it is held out while the model is trained on

all other subsets. This process is completed until accuracy

is determined in each instance of the dataset, and an overall

accuracy estimate is provided. We use 10-fold cross validation

to estimate the accuracy of the decision model. The overall

accuracy is 96.86% with a standard deviation of 1.41%. In

addition, the Kappa statistic for the model is computed. The

kappa value is a metric that compares an observed accuracy

with an expected accuracy (random chance). In other words,

the kappa statistic is a measure of how closely the instances

classified by the machine learning classifier matched the data

labeled as ground truth. The overall kappa value in our test is

Fig. 4. The decision tree for vehicle labeling of dataset PVD1. The label at
the top each node signifies the vehicle type. The three numbers in the middle
of each node are the proportion of individuals with respect to heavy, light,
and medium vehicle that were actually classified as the label. The number at
the bottom of each node is the percentage of individuals.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 13,2022 at 08:35:28 UTC from IEEE Xplore.  Restrictions apply. 



94.60% with the standard deviation of 2.38%. It shows that

our labeling model is somewhat accurate.

D. Vehicle Tracking

Since the aforementioned vehicle detection is performed on

consecutive frames, multiple instances of the same vehicle are

extracted and classified individually. Therefore, a tracking pro-

cedure is applied to analyze the motion of potential vehicles,

based on successive image frames. Because vehicles mostly

move vertically, their horizontal components change slightly,

and their vertical components are in accordance with their

speeds. So, if two vehicles (i and j) in two consecutive frames

(Ci(k), Cj(k − 1)) satisfy the following conditions, they are

considered as the same vehicle:

1) The horizontal distance between their centroids is smaller

than a certain threshold.
∣

∣Cx
i (k)− Cx

j (k − 1)
∣

∣ ≤ TH1 (3)

2) The vertical distance between their centroids is smaller

than a certain threshold.
∣

∣C
y
i (k)− C

y
j (k − 1)

∣

∣ ≤ TH2 (4)

3) The vehicle i in the current frame has approximately the

same size as the vehicle j in the previous frame.

min(PC
i (k), PC

j (k − 1))

max(PC
i (k), PC

j (k − 1))
≥ TH3 (5)

where Cx
i (k) is horizontal coordinate of vehicle’s centroid,

and C
y
i (k) is vertical coordinate of vehicle’s centroid; TH1

is the maximum horizontal displacement of vehicles in two

consecutive frame, TH2 is the maximum vertical displacement

of vehicles in two consecutive frame, and TH3 is the similarity

between vehicle i and j.

There are four possible scenarios after matching Ci(k) and

Cj(k − 1):

• If Ci(k) is not matched, this is a newly appearing vehicle

so Ci(k) is marked as a new vehicle. Note that any new

vehicle is given the default ”unidentified” label.

• If Ci(k) is matched with Cj(k − 1), this is a previously

tracked vehicle and therefore the label of Cj(k − 1) is

assigned to Ci(k). In addition, if the trajectory path of

Ci(k) has a length of 2, the vehicle will be relabeled as

”vehicle candidate”.

• If Ci(k) is a ”vehicle candidate”, it will be classified

and relabeled to one of the three vehicle classes after

crossing the counting line (CL). Only vehicle candidate

with a minimum of ten trajectory points is considered for

counting.

• If Cj(k−1) is not matched, this vehicle has already exited

so its label is removed. Note that the vehicle along with

its feature vectors will only be deleted if they will have

not been matched after (k + 5) frames later.

In many cases during the motion of an object, the tracking

algorithm suddenly ceases tracking and considers it a new

object. Furthermore, some trackers cannot keep track of vehi-

cles’ trajectories when they move closely with each other as

observed in Fig. 5(a). These are the main reasons for missed

counting, as well as duplicate counting. In addressing this

problem, we extend the matching process of the tracker to

look back up to 5 previous consecutive frames. Note that TH1

and TH2 are multiplied by m, where m is the mth look back

frame. Fig. 5(b) shows the results of our tracking algorithm.

III. EXPERIMENTS AND DISCUSSION

In order to evaluate the system, experiments were performed

on traffic datasets captured in Ho Chi Minh City, Vietnam

at several locations from single pole-mounted cameras during

daytime periods. The capture rate is 30 frames per second (fps)

with the resolution of 640× 480. The system has been devel-

oped and tested on a computer comprising of Intel Core i7

4710HQ and 8GB of RAM. The experiments were conducted

to measure the classification accuracy of the proposed method

and to test the system performance as a whole.

A. Classification Accuracy

Table III summarizes the results of Ha’s method [11] and

our system on the dataset: VVK1, VVK2, PVD1, and PVD2.

These datasets represent ideal traffic environments in develop-

ing countries as well as tropical regions. The table consists of

the actual number of vehicles, the number of vehicles counted

by the system, true positive (TP), true negative (TN), false

positive (FP), false negative (FN). The per-class accuracy and

recall and total accuracy are calculated as suggested by [15].

Firstly, dataset VVK1 was captured when the sky is clear

and there are no shadow appearances where the roads are small

and do not have dedicated lanes for different vehicle types.

The results can be subjectively evaluated on the 1st column

of Fig. 6 where vehicles have been correctly classified to their

corresponding classes. Table III also suggests that our method

has better accuracy (96.3%) and higher recalls as Ha’s method

misclassified most buses and trucks as light vehicles (recall =

0%), consequently producing many false-positives.

Secondly, dataset VVK2 was captured when faint shadows

are present where the roads are bigger and have dedicated lanes

for different vehicle types. The 2nd column of Fig. 6 illustrates

the classification results of this dataset. We can observe on

the left and right images that the system can maintain stable

tracking of motorbikes which travels closely together. The

tracking and classification of medium and heavy vehicles also

yield good results. When comparing with Ha’s results, it can

be noticed that their system’s counting is higher than ours, but

as are their per-class FP values. This is caused by completely

missing out on heavy vehicles, resulting in lower accuracy and

recall. Meanwhile, the effectiveness of our classifier to identify

positive labels is high (average recall = 86.91%), as well as

the overall result (96.30%).

Finally, dataset PVD01 was captured as strong shadows

appear in almost every frame. This problem can be seen on the

3rd column of Fig. 6 where shadows’ intensity is constantly

changing with respect to moving clouds. Dataset PVD02 was

also captured at the same location, but in rainy weather at

dusk. The 4th column of Fig. 6 illustrates the highly complex
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(a)

(b)

Fig. 5. Comparison between vehicle tracking algorithm from Ha et al. [11] and our through frame 12555 to 12595 of dataset PVD01. Notice that the vehicle
bounded by a green ellipse indicates that it has been successful classified and counted. (a) Tracking results from Ha et al. [11]; the tracker cannot separate
the two motorbikes moving closely with each other in frame 12555, hence, results in occlusion in frame 12565 and miss counting the red motorbike in frame
12585. (b) Tracking results using our algorithm; the tracker can maintain solid trajectory tracking for each of the two closely moving vehicles.

TABLE III
COMPARISON OF CLASSIFICATION AND COUNTING RESULTS BETWEEN HA’S METHOD [11] AND OUR PROPOSED METHOD.

Ha’s method [11] Our method

Dataset Class Actual Count TP TN FP FN Acc Recall T.Acc Count TP TN FP FN Acc Recall T.Acc

VVK01
1 684 566 556 46 10 128 81.35% 81.29%

92.59%
627 626 57 1 58 92.05% 91.52%

96.30%2 53 50 46 556 4 7 98.21% 86.79% 61 49 634 12 4 97.71% 92.45%
3 11 0 0 602 0 11 98.21% 0% 11 8 675 3 3 99.13% 72.73%

VVK02
1 1008 979 858 91 121 150 77.72% 85.12%

86.94%
918 911 194 7 97 91.40% 90.38%

95.43%2 116 135 91 858 44 25 93.22% 78.45% 112 98 1007 14 13 97.61% 88.29%
3 117 0 0 949 0 107 89.87% 0% 106 96 1009 10 21 97.27% 82.05%

PVD01
1 312 327 206 214 121 106 64.91% 66.03%

74.57%
285 274 350 11 38 92.72% 87.83%

94.47%2 250 260 214 206 46 36 83.67% 86.60% 231 222 401 9 28 94.39% 88.80%
3 139 0 0 420 0 139 75.13% 0% 141 128 495 13 11 96.29% 92.09%

PVD02
1 0 20 0 93 20 0 82.30% 0%

85.71%
0 0 103 0 0 100% 100%

94.98%2 108 95 93 0 2 15 84.55% 86.11% 98 97 6 1 11 89.56% 89.81%
3 10 0 0 93 0 10 90.29% 0% 7 6 97 1 4 95.37% 60.00%

Overall Accuracy 84.95% 95.30%

Note that: TP = true positive; TN = true negative; FP = false positive; FN = false negative; Acc = accuracy; T.Acc = total accuracy.

surveillance scenarios which are caused by mirror-reflection

of vehicles and their headlights. Nevertheless, we can obtain

good classification results thank to the help of filter operations

[8] [9] as previously stated in Section II-A. The system can

detect the actual moving vehicles in both scenarios and gain

far more practical classification results (T.Acc = 94.47% and

94.98%) than Ha’s method (T.Acc = 74.57% and 85.71%).

By comparing with the method of Ha et al. [11], whose

studies are most relevant to ours, we have shown that our

proposed method is significantly better in terms of both

accuracy and recall when classifying vehicles. This result can

only be achieved by the combined effectiveness of vehicle

detection, filters, tracking, and decision rules. The overall

accuracy of the proposed method is roughly 95.3%.

B. System Performance

Finally, our method can process sample sequences at around

30 fps on non-shadows conditions. The processing rate is
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Fig. 6. Examples of vehicle tracking, classification and counting (green ellipses are light vehicles, yellow ellipses are medium vehicles, blue ellipses are
heavy vehicles). The 1st column: dataset VVK01 (early morning, mixed lanes). The 2nd column: dataset VVK02 (mid-morning, separate lanes). The 3rd

column: dataset PVD01 (afternoon, separate lanes). The 4th column: dataset PVD02 (dusk, separate lanes).

around 28 fps when shadows appear because the system needs

to run additional filters. In addition, when running all four

videos simultaneously, the system can still retain a frame rate

of 25 fps. The tests were performed by calculating the total

processing time of 1000 frames. On average, the system is

shown to have the ability to process images in real-time. Table

IV summarizes the results of these experiments.

TABLE IV
AVERAGE COMPUTING TIME

Dataset Total frames Run-time (sec.) Performance (fps)

VVK01 1000 34.28 29.17
VVK02 1000 30.32 32.98
PVD01 1000 29.52 33.87
PVD02 1000 29.50 33.89

All 4 videos 1000 (x4) 40.67 24.59

IV. CONCLUSION

In this paper, we have presented a vehicle detection and

classification system. Our most significant contribution in

this study is introducing advancements in vehicle tracking,

feature selection, and labeling rules to the classification model.

The proposed method presents marked improvements over

related studies as it classifies vehicles into three classes:

light, medium, and heavy by translating decisions into sim-

ple if-else blocks with minimal errors whist keeping track

of them. Experiments have confirmed that the system can

work robustly throughout the daytime surveillance environ-

ments whilst maintaining real-time performance. Based on this

framework, future studies can be extended to handle different

scenarios such as nighttime, rush-hour, and so on.
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