
 

 

Object Detection with Deep Learning on Drive PX2 
 
 

Duong Nguyen-Ngoc Tran, Huy-Hung Nguyen, Long Hoang Pham, and Jae Wook Jeon 
Department of Electrical and Computer Engineering, Sungkyunkwang University, Korea 

duongtran@skku.edu, huyhung91@skku.edu, phlong@skku.edu, jwjeon@yurim.skku.ar.kr  

 
 

Abstract 
 

Many successful deep learning networks for 

object detection have been proposed in recent years, 

but direct comparison is difficult due to different 

resolutions, training validation data, and 

frameworks used to train these networks. In 

particular, we use DRIVE PX2 as a reference 

computing platform, which is manufactured by 

NVIDIA Corporation for development of 

autonomous vehicles and evaluate the performance 

of methods of autonomous driving on ARM-based 

embedded processing cores and Tegra-based 

embedded graphics processing units (GPUs).  

 
Keywords: object detection, autonomous car, drive 
px2, edge devices, 
 
1. Introduction 
 

Autonomous vehicle navigation to a given 
destination and advanced driver support will be one 
of the next great milestones for the automotive 
industry. The discovery and implementation of 
appropriate algorithms are integral parts of meeting 
this challenge. These facts led to attract several 
researchers and automakers to focus on the 
evolutionary process of the automotive industry, 
where the development of Advanced Driving 
Assistance Systems (ADAS) will allow the 
technology to mature and gradually lead to the 
development of autonomous vehicles. Perception 
techniques, and more precisely those related to lane 
detection, are not only a first step towards semi-
autonomous driving but will then open the way to 
fully advanced automated vehicles. However, there 
are some challenges in the development and 
inference of available deep learning model into the 
edge device: 

1. The higher accuracy model would require a 
more powerful processing device, and a large 
internal memory. 

2. The deep learning model must be run stably on 
a small device over a long time. 

 
This work was supported by the National Research Foundation of Korea 
(NRF) grant funded by the Korean government (MSIT) 
(2020R1A2C3011286). 

3. The implementation step must balance the 
dilemma between accuracy detection and speed 
performance.  

To meet the computational demands of deep 
learning applications, supplier offerings are usually 
based on various application-specific integrated 
circuits (ASICs) such as field programmable gate 
arrays (FPGAs), or on digital signal processors 
(DSPs) or graphics processing units (GPUs). Since 
GPUs are proprietary systems, the vendors generally 
do not disclose internal information. The prerequisite 
for setting up the emulation environment is the 
extraction of intrinsic properties from real hardware. 
In this study, we use the embedded computing 
platform marketed by NVIDIA as the DRIVE PX 
Parker AutoChauffeur. The PX2 incorporates 
multicore processors along with multiple GPUs to 
accelerate computer vision (CV) applications. To 
conclude, we illustrate a summary of the 
contributions as follows: 

1. We modify state-of-the-art object detection 
methods and make them more efficient and suitable 
for Drive PX2.  

2. We show the time-consuming comparison 
between the methods. 

 The remainder of this paper is organized as 
follows. In Section 2, the related works will be 
discussed. The detail of the experimental method is 
described and discussed in Section 3. In Section 4, 
the authors show qualitative results and benchmark 
results to corroborate the advantages of the new 
method. Conclusions are drawn in Section 5.  
 
2. Related work 
 

 
Figure 1: NVIDIA Drive PX2 AutoChauffeur 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 13,2022 at 08:30:46 UTC from IEEE Xplore.  Restrictions apply. 



 

 

A modern detector is usually composed of two 
parts: a backbone that is pre-trained on ImageNet, 
and a head is used to predict classes and bounding 
boxes of objects. A high performancehigh-
performance computer could run the backbone as 
VGG [1], ResNet [2], or DenseNet [3].  For the small 
and edge devices, their backbone could be small such 
as SqueezeNet [4], MobileNet [5], or ShuffleNet [6]. 
For the head part, it is usually classified into two 
types, i.e., one-stage object detector and two-stage 
object detector. The most representative two-stage 
object detector is the R-CNN [7] series. It is also 
possible to make a two-stage object detector an 
anchor-free object detector, such as RepPoints. As 
for the one-stage object detector, the most 
representative models are YOLO [8], SSD [9], and 
RetinaNet [10].  

In some cases, models should run based on the 
support of the development company, such as the 
version of operation, driver software, and the open 
source of the community. Specifically, we must build 
all of the framework and open source for testing on 
the old operation system and NVIDIA Driver if the 
company and community discontinue support.  
 
3. Methodology 
 

In this section, we provide detailed descriptions of 
our hardware platform, the DRIVE PX2 [11], the 
deep learning models, and the details of input image. 

 
3.1. Architecture 
 

For deep learning development in a practical way, 
NVIDIA shows that their device is more advanced in 
both training and inference [12]. Beside the Jetson 
device for research and testing, they offer the Drive 
device, which has a discrete GPU for processing, 
which will not affect the operation system while 
inferencing the model. NVIDIA Drive PX2 is a 
computing platform for autonomous driving, which 
promises a powerful and easy-to-develop platform 
for algorithm research and rapid prototyping. In the 
AutoChauffeur configuration, it consists of two 
Parker SoCs, two discrete GPUs (dGPU) and an 
Aurix TC297. Each Parker has one smaller 
integrated GPU (iGPU). Some relevant differences  

Figure 2: Speed performance of all methods on 
Drive PX2 

 
can be found in Table 1. The PX2 contains two 
identical and independent “Parker” systems on a chip 
(SoCs), called Tegra A and B, connected by a 1 
Gbps Controller Area Network (CAN) bus. We show 
one of the identical halves of the PX2. Each SoC 
contains six CPUs (four ARMv8 Cortex A57 cores, 
two ARMv8 Denver 2.0 cores), and an integrated 
Pascal GPU (iGPU). Each Parker SoC also connects 
to a discrete Pascal GPU (dGPU) over its PCIe x4 
bus. While the iGPU and CPU cores share main 
DRAM memory, the dGPU has its own DRAM 
memory. Memory transfers between CPU memory 
and dGPU memory use the PCIe bus. The remainder 
of this paper, including the design descriptions and 
evaluation experiments, use only one of the PX2’s 
two independent systems: iGPU vs. dGPU. As 
previously mentioned, the PX2 has two types of 
GPUs – the iGPU and the dGPU – using the same 
Pascal architecture. While they share an architecture, 
they share little else. Consider their specifications as 
shown in Table 1. The dGPU has more cores, faster 
memory, and a larger L2 cache. The iGPU lags 
behind, advantaged only by its access to the larger, 
albeit shared, main memory DRAM banks. In this 
paper, we consider and use the Drive PX2 for testing 
and a benchmark current state-of-the-art method, 
which are flexible in the covert model for 
implementation the in-edge device. The Drive PX2 
has two main boards, each board has two GPU 
processes for running a Linux OS and running the 
application, which is shown in detail in Table 1. In 
the Drive PX2, operation system is Ubuntu 16.04, 
CUDA 9.2 and CuDNN 5. 
   
3.2. Models 

Beside the Jetson version in NVIDIA, which is 
supported annually, the Drive PX2 is rarely upgraded 
to the new version of both the operation system and  

Table 1: Detail of Drive PX2 iGPU and dGPU 
 Integrated GPU 

(iGPU) 
Discrete GPU 

(dGPU) 
Computing 
units 

256 CUDA 
Cores 

1152 CUDA 
Cores 

Accessible 
memory 

6668 MBytes 3840 MBytes 

Memory 
bandwidth 

≈50 GBytes/s ≈80 GBytes/s 

Shared L2 
cache size 

512 KBytes 1,024 KBytes 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 13,2022 at 08:30:46 UTC from IEEE Xplore.  Restrictions apply. 



 

 

  
a) v5_512 b) v5_1920 

c) D7_512 d) D7_1920 
Figure 3: The visualization result of EfficientDet and 

YOLOv5 in 512 and 1920 resolution input image. 
 
the driver of CUDA and TensorRT. We must build 
and compile the framework and open source for 
testing. For the EfficientDet, Mobilenet, R-CNN, we 
used the Tensorflow 2.2.0 framework built from the 
source, after upgrading the GCC from 5.4 to 7.3. For 
the YOLOv5, we run it on Pytorch 1.5.1. Lastly, for 
the YOLOv2, YOLOv3, and YOLOv4, we compile 
the Darknet.  
 
3.3. Datasets 

 
 We consider several images of varying resolution 

from 512, 640, 712, 863, 1024, 1536, and 1920 of 
KATECH (Korea Automotive Technology Institute). 
The purpose for the various resolutions in the input 
image is that the current camera stream has various 
sizes, which is based on the bandwidth and the 
processing power of the edge device. For the small 
device or the low bandwidth, we should consider the 
low resolution for a short time consuming in both 
transfer and inferred image. And for the high 
bandwidth connection or the edge device, which has 
a processor capable of handling the heavy loading 
process, we are able to run the high-resolution model. 
The high and low-resolution input image has shown 
the difference in results. Figure 3 shows the number 
of detected objects on different models with the two 
lowest and highest resolutions. 

 
 4. Evaluation 
 

In this section, we show and discuss the 
quantitative and visualization result of the models 
run on Drive PX2. 
 
4.1. Various input size 
 

We consider the Efficient-Det model and Yolo 
model for inference, and present the results with 
various input image sizes without retraining the 
model. As can be seen in Table 3, for the YOLO 
version, only version 2 with the C++ language and  

Table 2: Speed performance of constant input size 
models 

Models PC PX2 
MobileNetV2 23 10 
MobileNetV3 20 9 
Fast R-CNN 16 3 
Mask R-CNN 15 4 
 
version 2 using Python with the Pytorch framework 
could run in high resolution at 1920 x 1920 pixels. 
However, the YOLOv3 and YOLOv4 could reach 
high resolution, because of out of memory  Figure 2 
shows more detail with respect to time consumption 
for each algorithm in Drive PX2. On the other size, 
of the EfficientDet with the Tensorflow framework, 
the latter version, the higher in accuracy. 
Additionally, with the high resolution, the model will 
still run on the Drive PX2. Moreover, for the 
visualization results shown in Figure 3, the bigger 
size results in more detected objects, which is the 
reason we should  consider preprocessing in practice 
aside from the bandwidth and memory of the device.  
 
4.2. Constant input size 
 

The state-of-the-art models have pre-trained 
checkpoints, in which the input image is a fixed size. 
In some cases, we usually convert the model from 
the original lite version, which has fewer parameters 
and smaller size. To compare with the flexible input 
size model, the constant input size shows the 
drawback with respect to the inference with the edge 
device, such as the hard adaption of the hardware 
design in the processor.  
 
5. Conclusion 
 

 In this paper, we illustrated the process of edge 
devices such as Drive PX2 in several state-of-the-art 
autonomous driving methods. We also benchmarked 
the execution speed of these networks on the 
NVIDIA Drive PX2. Furthermore, we showed an 
experimental analysis of some of the main aspects 
that influence the detection accuracy and speed of 
networks. This will help in choosing an appropriate 
method for deploying object detection in the real 
world based on requirements.  
 
References 
 
[1]  K. Simonyan and A. Zisserman, "Very deep 

convo- lutional networks for large-scale image 
recognition," arXiv preprint arXiv:1409.1556, 
2014.. 

[2]  K. He, X. Zhang, S. Ren and J. Sun, "Deep 
Residual Learning for Image Recognition," in 
IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Las Vegas, NV, 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 13,2022 at 08:30:46 UTC from IEEE Xplore.  Restrictions apply. 



 

 

USA, 2016.  
[3]  G. Huang, Z. Liu, L. V. D. Maaten and K. Q. 

Weinberger, "Densely connected convolutional 
networks," in IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 
Honolulu, HI, USA, 2017.  

[4]  F. N. Iandola, S. Han, M. W. Moskewicz, K. 
Ashraf, W. J. Dally and K. Keutzer, 
"SqueezeNet: AlexNet-level accuracy with 50x 
fewer parameters and <0.5MB model size," in 
arXiv preprint arXiv:1602.07360, 2016.  

[5]  A. G. Howard, M. Zhu, B. Chen, D. 
Kalenichenko, W. Wang, T. Weyand, M. 
Andreetto and H. Adam, "MobileNets: Efficient 
con- volutional neural networks for mobile 
vision applications," in arXiv preprint 

arXiv:1704.04861, 2017.  
[6]  N. Ma, X. Zhang, H.-T. Zheng and J. Sun, 

"ShuffleNetV2: Practical guidelines for efficient 
cnn architecture design," in the European Con- 

ference on Computer Vision (ECCV), 2018.  
[7]  R. Girshick, J. Donahue, T. Darrell and J. 

Malik, "Rich Feature Hierarchies for Accurate 
Object Detection and Semantic Segmentation," 
in IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Columbus, OH, 
USA, 2014.  

[8]  A. Bochkovskiy, C.-Y. Wang and H.-Y. M. 
Liao, "YOLOv4: Optimal Speed and Accuracy 

of Object Detection," in arXiv preprint 

arXiv:2004.10934, 2020.  
[9]  W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. 

Reed, C.-Y. Fu and A. C. Berg, "SSD: Single 
shot multibox detector," in the European 

Conference on Computer Vision (ECCV), 2016.  
[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. 

Doll´ar, "Focal loss for dense object detection," 
in the IEEE International Conference on Com- 

puter Vision (ICCV), 2017.  
[11] "NVIDIA DRIVE™ Developer Program for 

DRIVE PX 2," [Online]. Available: 
https://developer.nvidia.com/DRIVE-PX2-
program. [Accessed 04 04 2020]. 

[12] "NVIDIA DRIVING INNOVATION," 
[Online]. Available: 
https://www.nvidia.com/en-us/self-driving-
cars/. [Accessed 04 04 2020]. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Speed performance of various input size models. 
 Methods Resolutions 512 640 768 896 1024 1280 1536 1920 

1 YoloV2 PX2 5.50 5.50 4.90 4.30 4.00 3.10 2.10 0.80 
PC 20.10 19.20 15.30 12.10 9.30 6.30 4.60 2.90 

2 YoloV3 PX2 6.50 6.10 5.50 4.00 3.30 OOM OOM OOM 
PC 14.50 10.40 7.60 5.60 4.30 2.80 2.00 OOM 

3 YoloV4 PX2 6.30 6.20 5.30 3.90 OOM OOM OOM OOM 
PC 10.80 10.10 7.40 5.60 4.30 2.90 OOM OOM 

4 YoloV5 PX2 10.31 9.90 8.20 6.80 5.49 3.53 2.62 1.72 
PC 27.03 24.39 22.73 21.28 17.24 12.05 9.90 6.76 

5 EfficientDet-0 PX2 4.66 3.01 2.02 1.46 1.08 0.71 0.45 0.28 
PC 35.25 26.74 21.99 18.31 14.50 10.34 7.50 5.06 

6 EfficientDet-1 PX2 3.57 2.17 1.47 1.11 0.79 0.49 0.34 0.20 
PC 27.65 20.43 17.31 12.78 10.99 7.53 5.54 3.62 

7 EfficientDet-2 PX2 3.19 2.08 1.36 0.96 0.75 0.44 0.30 0.19 
PC 25.26 19.15 15.86 12.22 10.00 6.81 4.99 3.21 

8 EfficientDet-3 PX2 2.28 1.39 0.99 0.67 0.51 0.33 0.21 0.13 
PC 19.89 15.35 10.56 9.11 7.33 5.02 3.59 2.36 

9 EfficientDet-4 PX2 1.77 1.04 0.71 0.53 0.38 0.23 0.16 0.09 
PC 15.51 11.06 8.79 6.76 5.46 3.58 2.58 1.67 

10 EfficientDet-5 PX2 1.25 0.81 0.52 0.36 0.28 0.16 0.11 0.07 
PC 11.95 8.57 6.59 5.02 4.01 2.64 1.88 1.22 

11 EfficientDet-6 PX2 0.94 0.57 0.38 0.27 0.21 0.12 0.08 0.05 
PC 9.50 6.61 4.94 3.74 2.99 1.94 1.38 0.88 

12 EfficientDet-7 PX2 0.92 0.57 0.41 0.27 0.20 0.13 0.08 0.05 
PC 9.44 6.58 4.96 3.76 2.99 1.95 1.38 0.88 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 13,2022 at 08:30:46 UTC from IEEE Xplore.  Restrictions apply. 


