
DeepACO: A Robust Deep Learning-based Automatic Checkout System

Long Hoang Pham, Member, IEEE, Duong Nguyen-Ngoc Tran, Graduate Student Member, IEEE,

Huy-Hung Nguyen, Tai Huu-Phuong Tran, Hyung-Joon Jeon, Hyung-Min Jeon,

and Jae Wook Jeon, Senior Member, IEEE,

Department of Electrical and Computer Engineering

Sungkyunkwan University, South Korea

{phlong, duongtran, huyhung91, taithp, joonjeon, hmjeon, jwjeon}@skku.edu *

Abstract

The retail industry has seen an increasing growth of arti-

ficial intelligence and computer vision applications. Of the

various topics, automatic checkout (ACO) in retail stores

or supermarkets has emerged as one of the critical tasks in

this area. Several problems stem from real-world scenarios

such as object occlusion, blurring from scanning motion,

and similarity in scanned items. Moreover, the challenge

also comes from the difficulty of collecting training images

that reflect the realistic checkout scenarios due to contin-

uous updates of the products. This paper proposes a deep

learning-based automatic checkout system (DeepACO) to

recognize, localize, track, and count products as they move

along a retail check-out conveyor belt. The DeepACO fol-

lows the detect-and-track approach, i.e., applying trackers

on detected bounding boxes. It also provides a completed

pipeline for generating large training datasets under vari-

ous environments from synthetic data. The proposed system

has been evaluated on the 2022 AI City Challenge Track 4

benchmark. Compared to other state-of-the-art solutions, it

has shown outstanding results, achieving top-2 on the test-

set A with the F1 score of 0.4783.

1. Introduction

Recently, there has been a new revolution in the retail

industry through the adoption of artificial intelligence (AI)

and computer vision (CV) applications. Automatic check-

out (ACO) is one of the critical problems in this area. When

a customer puts their selected products on the checkout

counter, an ideal ACO system is expected to accurately rec-

*This work was supported by Institute for Information & communi-

cations Technology Promotion(IITP) grant funded by the Korea govern-

ment(MSIP) (2021-0-01364, An intelligent system for 24/7 real-time traf-

fic surveillance on edge devices)

ognize each of these products and return a complete shop-

ping list at one glance. When developing a vision- and deep

learning-based ACO system, several problems must be con-

sidered, such as object occlusion, motion blur, items simi-

larity, and the cost of miss-detection and miss-classification.

Furthermore, the problem also comes from the large scale

and the fine-grained nature of the product categories and

the difficulty of collecting training images that reflect the

realistic checkout scenarios due to continuous updates of

the products. Overall, accuracy, stability, and effectivity are

three vital concerns given real-world ACO systems.

This paper proposes a robust vision- and deep learning-

based automatic checkout system (DeepACO) for the re-

tail checkout process. The framework follows a detect-and-

track pipeline which first detects candidate bounding boxes,

then tracks persisted bounding boxes and assign unique IDs.

The tracked bounding boxes are observed throughout the re-

gion of interest (ROI) and are counted when they move out

of the ROI. To cope with the 2022 AI City Challenge Track

4’s evaluation metric, the counting timestamp is recorded

as the first time the whole object resides entirely inside the

ROI. The DeepACO implements a general pipeline that ac-

commodates different detection (and even instance segmen-

tation) and tracking methods. However, Scaled-YOLOv4

[25] and SORT [1] are implemented and tested in this paper.

The effectiveness of the proposed DeepACO framework has

been evaluated in the 2022 AI City Challenge Track 4 [17].

A pipeline to generate training data for detection and track-

ing models is implemented to obtain training data. The

generation algorithm randomly places and blends 116,500

synthetic images (patches) of the products over background

images under various lighting environments. The results of

DeepACO overcome other state-of-the-art (SOTA) methods

and achieve the top-2 ranking with the F1 score of 0.4783.

In brief, the main contributions are as follows:

• A general framework for retail product detection and

3107



counting is built.

• A pipeline to generate training data (bounding boxes

and instance masks) from scanned samples of the prod-

ucts.

• Extensive experiments demonstrated the effectiveness

of the DeepACO, achieving the second place in the

2022 AI City Challenge Track 4 [17].

The rest of the paper is as follows. Section 2 lists related

works. Section 3 discusses the data generation pipeline.

Section 4 elaborates the DeepACO framework. Section 5

describes the experimental results. Finally, Section 6 con-

cludes the findings in this paper.

2. Related Works

2.1. Object Detection

Moving object detection is one of the most fundamental

tasks in computer vision. In the early years, moving objects

in the image are detected using the background subtraction

methods [9]. Then, objects’ features are extracted by apply-

ing SIFT [15] or HOG [5] descriptors. Other methods use

traditional classification models such as Support Vector Ma-

chines [10] or Random Forest [3]. However, This approach

is prone to a high error rate because of the variety in objects’

appearances and scale, as also noise and illumination.

The recent progress of deep neural network architectures

has provided more reliable object detection methods. It

avoids manual feature extraction and uses a data-driven ap-

proach that automatically allows machines to learn feature

expressions. Two-stage detection architectures divide the

detection process into the region proposal and the classifi-

cation stage, and the well-known models are R-CNN [8],

Fast R-CNN [7], Faster R-CNN [22]. On the other hand,

one-stage detectors contain a single feed-forward, a fully

convolutional network that directly provides the bounding

boxes and the object classification. The widely used mod-

els are SSD [14] and YOLO [21] with variants such as

YOLOv4 [2], YOLOv5 [11], or Scaled-YOLOv4 [25], etc.

Most models are trained from scratch using either MS-

COCO Detection Challenge [12], ImageNet Large Scale Vi-

sual Recognition Challenge [23], or PASCAL VOC Chal-

lenges [6].

2.2. Object Tracking

Multiple Object Tracking (MOT) plays an essential role

in video-based application systems. Many existing MOTs

are built as the post-processing task of detection models.

The tracking could be run offline in traffic analysis or on-

line, running real-time processing simultaneously with the

camera or video input frame. When running offline, the

search uses the detection results over the entire frame se-

quence for the offline methods and then performs global op-

timizations. The standard offline methods have structure as

the graph model, which can be enhanced by using minimum

cost flow [26], and subgraph decomposition [24].

On the other hand, the online method follows the

tracking-by-detection paradigm. This approach uses the

current and previous frames to link detection results while

maintaining spatial and temporal consistency. Kalman

Filter-based [1], and Neural Network [27,29] have been pro-

posed to perform feature associations between tracking ob-

jects and new detection. These methods require no training

and allow for fast-speed tracking.

2.3. Retail Product Datasets

Recent years have seen an increasing number of new

datasets related to retail checkout. Some of the relevant

datasets are listed as follows.

• RPC [28] is a large-scale retail product checkout

dataset. It contains 83,739 images and 200 product

categories with 367,935 annotated objects. It includes

single-product images taken in controlled environment

and multi-product checkout images taken at the check-

out counter.

• RP2K [20] is a large-scale retail product dataset for

fine-grained image classification. It has 350,000 im-

ages of more than 2000 different retail products. All

images are captured manually in physical retail stores

with natural lighting, matching the scenario of real ap-

plications.

• AI City Challenge Retail Checkout [17] is a dataset

consisting of 116,500 synthetic images and several

video clips from over 100 different merchandise items.

The synthetic images are created from 3D scanned ob-

ject models and will be used for training.

3. Data Generation

The key of an ACO system is a recognition system that

can accurately predict the presence and count of each prod-

uct in an arbitrary product combination. Usually, such a

recognition system is trained with the images captured in

the same environment as the deployment scenario. In the

context of the ACO problem, the training image should be

the one taken at the checkout counter, which captures a

combination of multiple product instances. However, due

to many product categories and the continuous update of

the stock list, it is infeasible to learn the recognition model

by enumerating all the product combinations.

A more practical solution is to collect examplar images

of each product taken in a controlled environment. Hence,

the data generation process for the ACO system is defined as

3108



Figure 1. Checkout image generation process. Exemplar images are augmented (rotation, scaling, gamma adjustment) and are randomly

placed on the checkout background image so that generated bounding boxes’ IoUs do not exceed clutter ratio c.

Figure 2. Sampled checkout images of three clutter levels. From

left to right: easy, medium, hard modes

follows. Given a set of products P = {pi}, a single-product

exemplar image set S = {(Is,Ms, ys)|ys ∈ P} is first col-

lected, where ls is a single-product image, Ms is the binary

mask with the product’s pixels marked in white, and ys is

its associated product ID/category. In this paper, the single-

product exemplar set Saic = ⟨116, 500 images; 116 ids⟩
from the 2022 AI City Challenge Track 4 [17] is used.

The exemplar images are created from 3D scanned prod-

ucts [30]. Example of Saic can be shown in Fig. 1.

The recognition system can be trained on the syntheti-

cally generated checkout images by randomly choosing and

placing Saic on the checkout background with random ori-

entations, occlusion, complex clutter, and lighting condi-

tions. The checkout image set G = {gi} is constructed

using the following equation:

gi = p (N, a, s, g, c) (1)

where N = {(In,Mn, yn)} ∈ Saic is a random chosen

subset of n exemplar images. (a, s, g, c) are augmentation

parameters applied on each In. Values of augmentation pa-

rameters are randomly chosen among the ranges defined in

Table 1. Fig. 1 illustrates the detailed steps of checkout im-

ages generation process. The process starts with a “bitwise

and” operation between In and Mn to remove the back-

ground in the exemplar images. Then augmentation oper-

ations (rotation, scaling, and gamma adjustment) are ap-

plied on each patch using hyperparameters (a, s, g). Next,

patches are inverted thresholded to obtain masks. Masks are

randomly placed on the background image (extracted from

Variable Description Value ranges

n Number of products per image [7, 12]
a Rotation angle [0, 360]
s Scale ratio [0.8, 1.2]
g Gamma adjustment [0.8, 1.0]
c Clutter ratio [0.1, 0.5]

Table 1. Augmentation parameters for checkout image generation.

a real-world checkout video) so that bounding boxes IoUs

do not exceed the clutter ratio c. Examples of generated

checkout images with three different clutter levels can be

found in Fig. 2.

4. DeepACO

The DeepACO system consists of three components: a

detector, a tracker, and a counter. As the name suggests,

deep learning-based detectors and trackers are used. Differ-

ent counters can be built based to suit various application

requirements. An overview of the DeepACO system can be

seen in Fig. 3.

4.1. Object Detector

The DeepACO layouts a flexible detection pipeline that

allows different object detection models to be interchange-

able. As shown in Fig. 3, models only need to comply

with the batch-ized input and output formats. Hence, given

a batch of RGB images I = {Ii|t ≤ i ≤ t+B} captured at

time [t, t + B] (or I ∈ R
B×C×H×W ), the detector returns

a batch of detections D = {Di ∈ R
P×F |t ≤ i ≤ t + B}

where B is the batch size, Pi is the number of detections in

batch i, and F is a list of features [x1, y1, x2, y2, cls, conf ]
(top left x and y, bottom right x and y, class id, and confi-

dence score). Each detection is incorporated with the cor-

responding time step index (i.e, frame index), keeping the

output in a timely order.

3109



Figure 3. Sampled checkout images of three clutter levels.

Scaled-YOLOv4 [25] is an improvement of the YOLOv4

[2] object detection by applying the Cross Stage Process

(CSP) design over key components, including the Darknet

backbone and Path Aggregation Network (PAN) [13] neck.

Additionally, up-and-down scaling is applied to YOLOv4-

large to achieve high accuracy of 51.8%, 54.5%, and 55.5%

mAP (Scaled-YOLOv4-P5, P6, and P7, respectively) on the

MS-COCO test set while reaching real-time performance

at 43, 32, and 17 FPS respectively. Regarding scalability,

variants of Scaled-YOLOv4 models can be deployed to a

wide variety of cloud GPU or low-end GPU devices. In Fig.

3, Scaled-YOLOv4-P5 [25] is implemented as the baseline

detector.

The training of Scaled-YOLOv4 detectors consists of

15,642 synthetically generated checkout images from Sec-

tion 3. The standard split of 80%-20% training-testing is

used to finetune the MS-COCO pretrained models. The

same training configuration as in [25] is used. Addition-

ally, basic augmentation (rotate, translate, crop, etc.) and

advanced augmentation (RandAugmentation [4], and mo-

saic [2]) are also employed. Unintentionally, a double aug-

mentation operation is performed considering augmentation

operations during checkout image generation. Hence, the

resultant models can avoid overfitting and facilitate multi-

scale adaptability. The models are trained for 50 epochs

with Stochastic Gradient Descent (SGD), in which the best

weights evaluated on the test set are selected for inference.

4.2. Hand Estimator

One of the requirements for the 2022 AI City Challenge

Track 4 [17] is to identify hand-handled products by cus-

tomers. Hence, the ability to perceive the shape and motion

of hands can be a vital component in improving product

Figure 4. Synchronous and asynchronous processing pipelines are

implemented. The synchronous pipeline is mainly used for devel-

oping and debugging the system, while the asynchronous pipeline

is used for the final solution.

identification accuracy. Robust real-time hand perception is

a challenging computer vision task, as hands often occlude

themselves or each other (e.g., finger/palm occlusions and

handshakes) and lack high contrast patterns. The hand esti-

mation module is implemented using the MediaPipe frame-

work [16] consisting of multiple models working together:

a palm detection model that operates on the entire image

and returns an oriented hand bounding box; and a hand

landmark model that runs on the cropped image region de-

fined by the palm detector and produces high-fidelity 3D

hand keypoints.

First, a palm detector using SSD model [14] is trained

3110



(a) 21 hand landmarks defined in MediaPipe [16].

(b) Example of hand-handling prod-

uct. Certain hand landmarks points

are located inside the object’s bound-

ing box.

Figure 5. Using hand landmarks to identify hand-handling prod-

ucts.

instead of a hand detector since estimating bounding boxes

of rigid objects like palms and fists is significantly sim-

pler than detecting hands with articulated fingers. In ad-

dition, as palms are smaller objects, the non-maximum

suppression algorithm works well even for two-hand self-

occlusion cases. Moreover, palms can be modeled using

square bounding boxes, ignoring other aspect ratios and re-

ducing the number of anchors by a factor of 3-5.

After the palm detection over the whole image, the sub-

sequent hand landmark model performs precise keypoint

localization of 21 hand-knuckle coordinates inside the de-

tected hand regions via regression. The model learns a con-

sistent internal hand pose representation and is robust even

to partially visible hands and self-occlusions. In addition,

the cropped palm regions can also be generated based on the

hand landmarks identified in the previous frame in the hand

estimation pipeline. Only when the landmark model could

no longer identify hand presence is palm detection invoked

to relocalize the hand. An example of the hand landmarks

(coordinates) can be found in Fig. 5a.

The hand estimation module runs in parallel with the ob-

ject detection module, as shown in Fig. 4. A pretrained

weight provided by [16] is applied directly without any fine-

tuning. The localization results from both the object de-

tector 4.1 and hand estimator are used by the tracker to

filter out non-hand-handling products. Examples of hand-

handling products can also be found in Figs. 5b and ??. On

the remark, the hand estimation module is optionally im-

plemented to cope with the requirement of the 2022 AI City

Algorithm 1 Ray-casting algorithm

Require: l ∈ L, hand landmark point

1: count← 0

2: for each side ∈ polygon do

3: if ray intersects segment(l, side) then

4: count← count + 1

5: end if

6: end for

7: if is odd(count) then

8: return inside

9: else

10: return outside

11: end if

Algorithm 2 Hand-handling identification algorithm

Require: L, set of hand landmarks (42 points)

Require: b, object’s bounding box

1: touches← 0

2: for each l ∈ L do

3: if ray casting algorithm(l, b) then

4: touches← touches + 1

5: end if

6: end for

7: if touches ≥ min touches then

8: return True

9: else

10: return False

11: end if

Algorithm 3 State switching algorithm

Require: T, list of tracks

1: for each t ∈ T do

2: if tstate is new ∧ len(t) ≥ 3 then

3: tstate ← candidate

4: else if tstate is candidate ∧R(t) ≥ 0 then

5: tstate ← confirmed

6: else if tstate is confirmed ∧R(t) ≤ 0 then

7: tstate ← counting

8: else if tstate is counting ∧ hand handling(t) then

9: if R(t) < 0 ∨ tage ≥ max age then

10: tstate ← counted

11: else

12: tstate ← deleted

13: end if

14: else if tstate is counted ∧R(t) > 0 then

15: tstate ← exiting

16: else if tstate is exiting ∧ tage > max age then

17: tstate ← deleted

18: end if

19: end for

Challenge Track 4 [17]. In other use cases, this module can

be neglected.

4.3. Tracker

Tracking is an essential step in improving object recog-

nition in video processing. The tracking module assigns a

unique id to a detected object when it enters the ROI. It as-

sociates the currently tracking vehicles with newly detected

objects and maintains the unique id when moving through

the camera. Hence, each object should only be identified

3111



once.

Tracker. After obtaining the object detection results,

i.e., bounding boxes, the SORT [1] method is used as the

online multi-object tracker. Since the camera is mounted

above the checkout counter and facing straight down, in-

stead of a heavier one like DeepSORT [29], a simple tracker

like SORT is memory sufficiently, reducing the overall pro-

cessing speed. The SORT method uses Kalman Filter for

motion prediction and the Hungarian algorithm for tracks

assignment. The Kalman filter uses the unmatched detec-

tion results to initialize the tracking state as a new target

and the matched detection results to update the existing tar-

get’s tracking state. The state-space in each target is defined

in the dimensional state space (u, v, s, r, u̇, v̇, ṡ), where u

and v stand for the horizontal and vertical pixel 2D loca-

tion of the center of the target. The scale s and r represent

the scale (area) and the aspect ratio of the object’s bound-

ing box, respectively. Standard Kalman filter with constant

velocity motion and linear observation model assign target

object the tracklet k, which is used for following counting

task. When assigning new detection results to exist tar-

gets, the shape of each target’s bounding box is estimated

by predicting its unique position in the current frame. The

allocation cost matrix is then calculated as the Intersection-

over-Union (IoU) distance between each detection and all

predicted bounding boxes of the existing target. The IoU

distance as the cost criteria for optimal matching originates

from the SORT [1] where it has significantly demonstrated

its fast and effective performance when used alongside the

Kalman filter. Thus, for a detection Di, its cost of being

matched with any tracklet Tj is computed using IoU that is

thresholded by IoU = 0.3 at minimum. The assignment is

solved optimally using the Hungarian algorithm.

Tracking State. Track management controls the object’s

existence in the whole program. The extension of the orig-

inal track management of SORT [1] is one of the signifi-

cant contributions in the proposed DeepACO system. When

an object travels through the camera’s field of view, several

stages can be defined as shown in Fig. 3. The tracking states

are defined as in Table 2

The full state switching algorithm is described in Al-

gorithm 3. The transition from the ”Counting” to the

“Counted” stage is the most important. Products are only

counted if they are hand-handled. Through the observa-

tion suggested by Fig. 5b, a straightforward way to iden-

tify hand-handled products is by counting hand landmarks

residing inside the detected bounding boxes. Hence, the

ray-casting algorithm finds whether a hand landmark is in-

side or outside a simple polygon, i.e., a bounding box. The

number of intersections for a ray passing from the polygon’s

exterior to any point, if odd, shows that the point lies inside

the polygon. If it is even, the point lies outside the poly-

gon; this test also works in three dimensions. Algorithms 1

State Description

New

Track

A new track is created for the newly detected object. This

track has a length of 1

Candidate The new track has been successfully observed for several

consecutive frames making it a candidate product. The

object at this state is still located outside the ROI

Confirmed The product moves inside the ROI. In this state, hand land-

marks are used to identify whether the product is hand-

handled

Counting When the product touches the ROI border, it is marked as

a counting product

Counted The product is marked as counted if it satisfies the con-

straint defined in Alg. 2. Otherwise, it is marked for dele-

tion

Exiting The product has been counted and completely exited the

ROI and is marked to be deleted

Deleted The original deleting state of SORT [1]

Table 2. Tracklet states.

and 2 shows the detail of the ray-casting and hand-handling

identification algorithms respectively.

4.4. Counter

In this paper, to cope with AI City Challenge, a simple

counter that records the product recognition timestamp is

implemented. The time when the object is marked as ”Con-

firmed” and is wholly entered into the ROI, the associate

frame index is saved. Later, when the object is marked for

“Counting”, the output timestamp is calculated by dividing

the saved frame index by the video frame rate, which is 60.

5. Experiments & Discussion

5.1. Implementation Details

The DeepACO system was implemented on a desktop

consisting of an Intel Core i7-7700, an NVIDIA GeForce

RTX 3090 24GB, and 32GB RAM. The whole system is

implemented using a combination of OpenCV [18], Py-

Torch [19], and Mediapipe [16] libraries. Two different

processing pipelines have been implemented: synchronous

and asynchronous. As the name suggests, the synchronous

processing pipeline runs each component in sequential or-

der. Meanwhile, in asynchronous mode, each module is

managed by a unique thread (4 CPU threads and 1 GPU

thread). Between two modules, a queue is added to store the

intermediate results, removing any bottlenecks. The asyn-

chronous processing pipeline is used for the final solution

of the 2022 AI City Challenge Track 4.

5.2. Evaluation Data & Metric

The experiments are performed using the test set pro-

vided by the 2022 AI City Challenge [17]. The test set con-

sists of five videos where the camera is mounted above the

checkout counter and facing straight down while a customer

3112



Rank Team ID Score

1 16 1.0000

2 94 (Ours) 0.4783

(Precision=0.4400, Recall=0.5238)

3 104 0.4545

4 165 0.4400

5 66 0.4314

6 76 0.4231

7 117 0.4167

8 4 0.4082

9 9 0.4000

10 55 0.4000

Table 3. The overall ranking on F1 score of the multi-class product

counting & recognition for automated retail checkout in the 2022

AI City Challenge Track 4.

is pretending to perform a checkout action by “scanning”

objects in front of the counter naturally.
The inference results are evaluated by the F1 score:

F1 =
TP

TP + 0.5× (FP + FN)
(2)

To compute the F1 score, a true-positive (TP) identification

will be considered when an object was correctly identified

within the region of interest, i.e., the object class was accu-

rately determined, and the object was identified within the

time that the object was over the white tray. A false-positive

(FP) is an identified object that is not a TP identification. Fi-

nally, a false-negative (FN) identification is a ground-truth

object that was not correctly identified.

5.3. Quantitative Evaluation

Our team achieved a very competitive final F1 score of

0.4745 (second place) in the 2022 AI City Challenge Track

4. The final ranking results of the challenge are shown in

Table 3. Nevertheless, the recall is only 0.5238, i.e., only

half of the test set ground truth has been identified correctly.

It means some of the checkout actions are not defined as

”scanning” naturally, or the recorded timestamps are incor-

rect.

5.4. Speed Performance

Beside F1 score, high-performance processing is also

considered in this paper. Therefore, the DeepACO system

has been tested on two NVIDIA GPUs: an RTX 3090 and

an RTX A6000. Both synchronous and asynchronous pro-

cessing pipelines have been evaluated. Different tries with

different batch sizes and queue sizes are tested for the asyn-

chronous processing pipeline. Tables 4, and 5 summary

all the experimental results for Scaled-YOLOv4-P5, and -

P7. The results show that implementing Scaled-YOLOv4-

P5 with image resolution 448 × 448, batch size 16, and

queue size 1 can satisfy real-time processing. The results

also indicate that even with queue size 1, the asynchronous

processing pipeline significantly boosts the performance of

the DeepACO system by an average of 10 FPS, making it

suitable for real-world applications.

6. Conclusion

This paper proposes a vision- and deep learning-based

automatic checkout system, i.e., DeepACO. The system

provides a robust solution for recognizing, localizing, and

counting products during the checkout process. Also, Deep-

ACO implements a convenience detect-and-track frame-

work that can support a wide variety of detection and track-

ing models, extending the framework’s capabilities to han-

dle various real-world applications. Besides the main func-

tionality, data generate pipelines are introduced to obtain

many training images under different lighting conditions.

The accuracy of DeepACO has been evaluated through the

2022 AI City Challenge Track 4 benchmark, achieving a

top-2 rank with an F1 score of 0.4783. Furthermore, the

system can reach 30 FPS on average, making it suitable for

real-world applications.

References

[1] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Sim-

ple online and realtime tracking. In IEEE Int. Conf. Image

Process., pages 3464–3468, 2016. 1, 2, 6

[2] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4:

Optimal speed and accuracy of object detection. arXiv, 2020.

2, 4

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001. 2

[4] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le. Randaugment:

Practical automated data augmentation with a reduced search

space. In Adv. Neural Inform. Process. Syst., volume 33,

pages 18613–18624, 2020. 4

[5] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In IEEE Conf. Comput. Vis. Pattern

Recog., volume 1, pages 886–893, 2005. 2

[6] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. Int. J. Comput. Vis.,

111(1):98–136, 2015. 2

[7] R. Girshick. Fast R-CNN. In Int. Conf. Comput. Vis., pages

1440–1448, 2015. 2

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 580–587, 2014. 2

[9] S. V.-U. Ha, N. M. Chung, H. N. Phan, and C. T. Nguyen.

TensorMoG: A tensor-driven gaussian mixture model with

dynamic scene adaptation for background modelling. Sen-

sors, 20(23), 2020. 2

[10] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B.

Scholkopf. Support vector machines. IEEE Intell. Syst. Their

Appl., 13(4):18–28, 1998. 2

3113



q
b 1 8 16 32 64

S 20.43 / 17.98 20.58 / 18.05 20.54 / 18.06 20.66 / 18.12 20.48 / 18.07

1 31.45 / 33.49 32.82 / 33.86 32.97 / 34.03 32.77 / 33.79 32.37 / 33.87

8 30.60 / 33.57 32.43 / 33.86 30.00 / 33.63 28.93 / 33.87 27.48 / 33.64

16 29.61 / 33.63 29.61 / 33.83 28.51 / 33.88 27.55 / 33.84 26.97 / 33.69

32 29.22 / 33.79 28.87 / 33.64 28.23 / 33.73 27.82 / 33.75 26.88 / 33.83

Table 4. Speed performance of Scaled-YOLOv4-P5 with image resolution 448 × 448 measured in FPS (RTX 3090 / RTX A6000). The

first row indicates synchronous processing pipeline.

q
b 1 8 16 32 64

S 16.73 / 16.35 16.93 / 16.49 16.93 / 16.41 16.98 / 16.62 16.69 / 16.46

1 28.40 / 32.90 30.50 / 32.50 30.60 / 33.70 30.50 / 33.80 30.00 / 33.60

8 28.80 / 33.70 29.90 / 33.70 29.20 / 33.90 26.70 / 33.70 28.00 / 33.70

16 27.80 / 33.90 27.8 / 33.90 27.90 / 33.80 27.50 / 33.80 26.50 / 33.90

32 27.50 / 32.90 27.50 / 33.90 27.20 / 34.00 27.10 / 33.60 27.10 / 33.70

Table 5. Speed performance of Scaled-YOLOv4-P7 with image resolution 896 × 896 measured in FPS (RTX 3090 / RTX A6000). The

first row indicates synchronous processing pipeline.

[11] G. Jocher. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow

Edge TPU and OpenVINO Export and Inference, Feb. 2022.

2

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In Eur. Conf. Comput. Vis., volume

8693, pages 740–755, 2014. 2

[13] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation

network for instance segmentation. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 8759–8768, 2018. 4

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot MultiBox detector. In

Eur. Conf. Comput. Vis., volume 9905, pages 21–37, 2016.

2, 4

[15] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vis., 60(2):91–110, 2004. 2

[16] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,

M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, W.-

T. Chang, W. Hua, M. Georg, and M. Grundmann. Me-

diapipe: A framework for building perception pipelines.

arXiv:1906.08172, 2019. 4, 5, 6

[17] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C.

Chang, Y. Yao, L. Zheng, M. S. Rahman, A. S., Q. Feng,

V. Ablavsky, S. Sclaroff, and R. Chellappa. The 6th AI

City Challenge. In IEEE Conf. Comput. Vis. Pattern Recog.

Worksh., 2022. 1, 2, 3, 4, 5, 6

[18] OpenCV. Open source computer vision library, 2015. 6

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.

Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.

Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.

Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.

Chintala. Pytorch: An imperative style, high-performance

deep learning library. In Adv. Neural Inform. Process. Syst.,

pages 8024–8035, 2019. 6

[20] J. Peng, C. Xiao, and Y. Li. RP2K: A large-scale re-

tail product dataset for fine-grained image classification.

arXiv:2006.12634, 2021. 2

[21] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In IEEE Conf. Comput. Vis. Pattern Recog., pages

6517–6525, 2017. 2

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Adv. Neural Inform. Process. Syst., page 91–99,

2015. 2

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.

Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recogni-

tion Challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

2

[24] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Subgraph

decomposition for multi-target tracking. In IEEE Conf. Com-

put. Vis. Pattern Recog., pages 5033–5041, 2015. 2

[25] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Scaled-

YOLOv4: Scaling cross stage partial network. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 13029–13038, 2021. 1,

2, 4

[26] X. Wang, E. Türetken, F. Fleuret, and P. Fua. Tracking inter-

acting objects using intertwined flows. 38(11):2312–2326,

2016. 2

[27] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang. Towards

real-time multi-object tracking. In Eur. Conf. Comput. Vis.,

page 107–122, 2020. 2

[28] X.-S. Wei, Q. Cui, L. Yang, P. Wang, and L. Liu.

RPC: A large-scale retail product checkout dataset.

arXiv:1901.07249, 2019. 2

[29] N. Wojke, A. Bewley, and D. Paulus. Simple online and

realtime tracking with a deep association metric. In IEEE

Int. Conf. Image Process., pages 3645–3649, 2017. 2, 6

[30] Y. Yao, L. Zheng, X. Yang, M. Napthade, and T. Gedeon.

Attribute descent: Simulating object-centric datasets on the

content level and beyond. arXiv preprint arXiv:2202.14034,

2022. 3

3114


