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Abstract—Traffic surveillance system (TSS) is an essential
tool to extract necessary information (count, type, speed, etc.)
from cameras for traffic monitoring in many metro cities. In
TSS, vehicle detection plays a pivotal role as it is a vital
process for further analysis such as vehicle classification and
vehicle tracking. So far there has been a considerable amount
of research proposed with single-pipeline Convolution Neural
Networks (CNN) to accommodate this subject. Although these
studies achieved results with high accuracy, they required a
large dataset and an implementation on dedicated hardware
configuration. This paper presents a novel method with vision-
based approach to detect moving vehicles from static surveillance
cameras. Moving vehicles are detected and analysed by means
of using a Neural Decision Tree accompanied with geometric
features to classify vehicles and a Single Shot Detector to handle
occlusion when inter-vehicle space between vehicles significantly
decreases. Experiments have been conducted on the real-world
data to evaluate the performance and accuracy of the proposed
method. The results showed that our proposed method achieved
a promising detection rate with real-time processing on regular
hardware configuration.

Index Terms—Vehicle Detection, Vehicle Classification, Neural
Decision Tree, Occlusion Handling, Traffic Surveillance Systems

I. INTRODUCTION

Over the past decade, cutting-edge traffic surveillance sys-

tems (TSS) have employed a broad range of advanced sensors

for estimating traffic parameters, including magnetic, radar,

infrared detectors, inductive loop detectors, and so on. How-

ever, such detectors are costly and large in size, have high

installation cost and are difficult to maintain, while provid-

ing limited information [1]. Accordingly, recent years have

witnessed a rapid progression of computer vision, especially

expert vision-based systems. Traffic video monitoring systems,

which are specific instances in this series, aim to detect,

classify vehicles and extract further traffic information. In this

context, vehicle detection has emerged as a challenging task

because of the importance of localizing vehicles in sequences

of static images. Obviously, video-based TSSs gained more

superior advantages due to the capability to provide more

information about traffic conditions and can be adapted to

a wide range of views associated with varying weather [2],

illumination conditions and traffic density using sophisticated
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image analysis tools. Besides, they are low cost, less disrup-

tive, require low maintenance, non-contact.

With the remarkable development of pattern recognition

and image processing, a variety of object detection techniques

have been proposed. Overall, there are two rudimentary ap-

proaches to vehicle detection and classification: model-based

and feature-based [3]. In model-based tactics, vehicles are

classified based on their shapes, silhouettes and dimensions. A

spectacular study conducted by Du et al. [4] who transformed

each 2D bounding box into a 3D point cloud to detect 3D

boundary boxes of vehicles. This method achieves a high

vehicle detection rate; however it requires three models to

cover all occlusion patterns in implementation. Chabot et al.

[5] proposed a Deep MANTA that refines 2D bounding boxes

of vehicles to recover orientation and 3D location of vehicles

via a robust 2D/3D point matching. This manner works well

when parts of vehicles are obscured but a dataset of 3D shape

templates are required to encode the variability of vehicles.

On the other hand, feature-based methods categorize vehi-

cles based on their visual features (including edges, corners,

gradients). Ma et al. [6] proposed a method of segmenting

occluded vehicles by exploiting Difference of Gaussian and

Local Binary Pattern features to examine the constraints of

symmetry axes of vehicles. Then, a contour concavity analysis

is performed to separate vehicles from occlusion blobs. Chang

et al. [7] present a recursive algorithm combining with high-

level visual features extraction to segment vehicles involved in

multiple-vehicle occlusions. Velastin et al. [8] identified and

classified motorcycles in urban environments by employing a

Faster R-CNN-like model that was trained and evaluated on

7500 annotated images. The solutions following this approach

require a great amount of computation for feature extraction

in training phase and are hard to be put into practice without

the support of fancy hardware configuration such as graphics

processing units (GPU).

In this paper, we propose a novel vehicle detection algorithm

that is sufficient to handle occlusion among vehicles with

real-time performance. Our work consists of three modules:

moving vehicle detection, vehicle classification and occlusion

handling. Like motion-based methods, our method exploits

a background subtraction model to separate moving vehicles

from a static scene. Then, extracted vehicles are examined for

classification on a neural decision tree. A model, our main

contribution in this work, was developed with a data-driven

approach on real-world data based on a soft decision tree

presented by Frosst and Hinton [9]. Thereupon, vehicles are

classified into three specific classes and occlusion blobs are
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identified simultaneously. At the last step, our work uses visual

features which are derived from MobileNets [10] conjugate a

CNN model inspired from a Single Shot Multibox Detector

[11] for the task of detecting obscured vehicles.

The remaining of this paper proceeds as follows: Initially,

Section II describes our proposed method including Vehicle

detection, Vehicle classification and Occlusion handling. Then,

experiments and discussion are stated in Section III to evaluate,

to encapsulate our work, and to conclude the paper.

II. THE PROPOSED METHOD

A. Moving Vehicle Detection

Our method follows a motion-based approach where se-

quences of images are captured from static pole-mounted

cameras. Then, a model of background subtraction is typically

adopted to construct two main components: a background

and a corresponding foreground from an input image. While

backgrounds depict the appearance of stationary objects, fore-

grounds characterize moving objects as white blobs on black

scenes. In empirical investigation, a background image is not

always immutably available because of a number of external

factors including camera jitters, illumination change, flows

of chaotic vehicles, and presence of motionless foreground

objects. A noteworthy technique is to examine an entropy of

a Gaussian mixture model and disorder removal framework to

neglect the disorder frames. Hence, in order to address thorny

issues in background modelling, an approach proposed by Ha

et al. [12] is adopted in our work. Fig. 1(a)-(c) illustrates a

process of foreground construction and background modelling

With the constructed background, moving foreground ob-

jects are extracted using structural analysis of border [13].

Pre-processing and filtering operations, which aim to remove

shadow [14], and noises are executed to refine the vehicles’

images. Then a configuration of an observation zone is applied

in order to diminish off-center vehicles and to extract objects’

contours inside the zone by using our prior work [15]. From

these, we obtain the set of vehicle candidates separately as

illustrated in Fig. 1(d)-(k).

B. Vehicle Classification

Literally, vanilla decision trees classify data mainly based

on the correlation between the entropies of input features and

expected outcomes; so they cannot serve as an alternative

to neural networks due to trade-offs occurring in the sense

of generalization and interpretability. On the contrary, recent

research has proven the effectiveness of deep convolutional

neural networks in classifying a complicated set of objects’

images via their hidden layers. With respect to our approach,

after vehicles are previously extracted, we propose a hierar-

chical model that use a representation of a neural network to

train a decision tree on features of vehicles’ shapes.

1) Feature Extraction: In order to reduce computational

cost of each detection instance of a vehicle, a list of ten high-

level measurement features that represent the characteristics

of ith vehicle at kth frame are extracted as described in Table

(a) (b)

(c) (d)

(e) (f) (g) (h) (i) (j) (k)

Fig. 1. Moving vehicle detection process. (a) Input image, (b) Constructed
background, (c) Corresponding foreground, (d) Field of view of examining
camera, (e) Detected vehicles within observation zone, (f) Some of extracted
vehicles’ images

I. These features mostly present geometric characteristic of

vehicles’s appearance.

TABLE I
VEHICLE MEASUREMENT FEATURES

Symbol Description

Bh
i
(k) Height of vehicle’s bounding box

Bw
i
(k) Width of vehicle’s bounding box

Eh
i
(k) Major axis of vehicle’ bounding ellipse

Ew
i
(k) Minor axis of vehicle’s bounding ellipse

PE
i
(k) Total pixels inside vehicle’s bounding ellipse

PC
i
(k) Total pixels inside vehicle’s contour (vehicle area)

PCH
i

(k) Total pixels inside vehicle’s Convex Hull contour

LC
i
(k) Perimeter of vehicle’s contour

Rdi
i
(k) Dimension ratio of vehicle

Rde
i
(k) Density ratio of vehicle

2) Occlusion Detection: Among detected candidates, there

are blobs of overlapping vehicles interspersed with isolated

vehicles. From field of view of surveillance cameras, we regard

vehicles’ shapes as outward curves, which are illustrated in

Fig. 3(a)-(f). Therefore, when inter-vehicle space reduces,

defective areas surround vehicle areas as exemplified in Fig.

3(g)-(l). Accordingly, in order to separate these two group, we

examine the defective area of each candidate i at each frame

k, which is defined as:

PD
i (k) = PCH

i (k)− PC
i (k) (1)

Then, we investigate the occlusion state of each candidate

by limiting this metric with a lower-bound threshold:
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3. Detected candidates with captured images and corresponding fore-
ground. First row: isolated vehicles. Second row: blob of overlapping vehicles.
White regions illustrate vehicles’ areas. Red regions annotate defective areas.

Φoccls
i (k) =

{

1 for PD
i (k) ≥ Toccls

0 otherwise
(2)

For each candidate, Φoccls
i = 1 indicates that object i

presents blobs of overlapping vehicles. Otherwise, i is an

isolated vehicle. Blobs of overlapping vehicles are further

processed at a module of occlusion handling.

3) Neural Decision Tree model: Considering the variability

of examining vehicles, we define three specific classes for the

task of vehicle classification:

• Class 1: Motorbike, consisting of bike and motorbike.

• Class 2: Car, consisting of car, sedan, and SUVs.

• Class 3: Large vehicle, consisting of trucks and buses.

We construct a neural decision tree that utilizes the learning

mechanism of neural networks to exploit common patterns of

vehicles’ features in form of a full binary tree as illustrated

in Fig. 4(c). Our proposed decision tree contains a set of

nodes that maintain two probabilistic attributes to route input

features to leaf nodes for classification: a node probability and

a branching probability. Overall, both of them are actually an

analysis of conveyances’ characteristics at each node; so these

two attributes strongly depend on vehicles’ features. Accord-

ingly, using non-linear function is an appropriate approach to

transform the features to pruning conditions. Regarding this

issue, suppose a vehicle’s feature X is being examined at an

internal node intl which has a left and a right node namely

intl0 and intl1 respectively, the branching probability that intl

transfers X to a node intl+1 residing in the next lower level

is presented as follows:

P branch
intl = P (intl + 1|intl)

=

{

σ(XWi +Bi) for (intl + 1) = intl0

1.0− σ(XWi +Bi) for (intl + 1) = intl1
(3)

where σ is the sigmoid function; Wi, Bi respectively presents

a learned weight and a bias of node intl

The other distribution that each node maintains is a node

probability, denoted as Pnode
i , which describes the probability

that an examining set of features eventually reach a node i

from the root node. Obviously, this metric follows the Bayes’

theorem of conditional probability [16]. Furthermore, each

feature vector incontrovertibly pass by the root node at the

beginning. Mathematically, let i−1, i−2, i−3, ..., 2, 1, root

be sequential bottom-up ancestors of i, the probability that a

vehicle feature reaches node i is equivalent to:

Pnode
i = 1.0 if i = root

Pnode
i = Pnode

i−1
.P branch

i−1
= Pnode

i−1
.P (i|i− 1) otherwise

= Pnode
root .

i−1
∏

j=root

P (j + 1|j)

= Pnode
root .

i−1
∏

j=root

P branch
j

(4)

There is a radical difference between leaf nodes and other

internal nodes. Specifically, while internal nodes focus on

directing vehicles’ features to a node at the next level, leaf

nodes play a key role in classifying vehicle into defined

classes, labelling candidates of vehicles at the end of the tree.

Different from the traditional paradigm of neural networks,

at the lowest level of our tree, each leaf has a potential to

perform compartmentalization for multiple classes. Given that

X is examined at a leaf l, the probability which vehicle is

classified in class c mathematically indicated as:

P cls
l,c = P (c|l) =

exp(φl,c)
∑

c′∈C exp(φl,c′)
(5)

where φl,c denotes the learned parameter that leaf l distributes

vehicle instances into class c of C classes.

Fig. 4. Vehicle classification process. (a) Vehicle Detection. (b) Feature Extraction. (c) Vehicle Classification via a neural decision tree with depth = 3.
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4) Class prediction: Turning into classification, when a set

of vehicles’ features is passed through the tree mentioned in

the above section, there are two tasks that need to be taken on

to determine corresponding categories of vehicles: choosing

a leaf that performs classification for each vehicle and then

figuring out a class of the vehicle based on the attributes of

that leaf.

As previously stated in Section II-B3, during the phase of

classification, the path routing of each vehicle is influenced by

the characteristics of feature vectors. In other words, vehicles

may have different choices of leaves to label their categories

based on probabilistic metrics. For each vehicle, taking a leaf

that possess the greatest node probability, we obtain a leaf

handling the classification for that vehicle. Then, the class of

a vehicle v that was categorized by a leaf lv is defined as:

cv = argmax
c∈C

P cls
lv,c

(Xv) (6)

with lv = argmax
l∈leaves

Pnode
l (Xv) (7)

5) Loss function: After defining a model for classification,

a loss function is a significant factor that ensures expected

outcomes. Regarding our approach, the loss function of the

proposed neural decision tree consists of two factors: routing

and classification.

For the perspective of routing vehicles through internal

nodes, in order to enhance the utilization of all paths within

the tree,we must make equal use of all nodes and conserve a

balance between two branches of each node. Otherwise, some

branches in the tree becomes inequitable and unreachable.

Considering this issue, we construct an averaging factor for

each node by following the principal idea of arithmetic mean.

Literally, the probability of reaching a sub-branch of each node

counts on the sum of the node probabilities of that node with

respect to different sets of vehicles’ features X:

γi =

∑

X

Pnode
i (X).P branch

i (X)

∑

X

Pnode
i (X)

(8)

In the literature, we hypothesize that two branches of

each node have equal distribution of 0.5. Furthermore, the

probability of reaching a node also proportionally depends on

the depth of the node. With defined terms, the balance between

two branches of each node is achieved by using entropy loss.

Hence, the penalty for all internal nodes is defined as follows:

Lroute(X) = −λ
∑

i∈Intl.Nodes

ρdi [0.5 log(1.0− γi) + 0.5 log(γi)] (9)

where di is the depth of node i in the tree, ρ is a decay penalty;

λ is a regularization factor. both of these values are added to

avoid overfitting in the model during training phase.

Another significant aspect of the proposed model is the loss

of classification. Regarding this, we use cross-entropy as a

cost function measuring the distance between two probability

distributions - predicted and actual classification, denoted as:

Lcls(X) = − log

(

∑

l∈leaves

∑

c∈C

Ȳc logP
pred
l,c (X)

)

(10)

with P
pred
l,c = Pnode

l (X)P cls
l,c (X) (11)

where P
pred
l,c is the probability that a feature vector X is

categorized as class c after going through the tree from the root

and terminating at leaf l. The value of this metric is derived

by following the Bayes’s theorem of conditional probability.

In summary, the overall loss function of our proposed model

is the sum of both loss functions. Trained with a sufficient

dataset of corresponding vehicle features, the model updates

elementary attributes at each node. Extracted features are then

utilized to categorize isolated vehicles into three classes.

C. Occlusion Handling

Moving at a high density of the road area, vehicles become

more challenging to be detected as their inner-space distance

sharply decreases, increasing the number of overlapping ve-

hicles. Regarding this issue, investigating vehicles’ textured

features is a pragmatic approach. In other words, the represen-

tation of vehicles are inspected throughout intermediate layers

of a convolutional neural network. As extremely growing in

theory, the demand for low-end devices is coming up as a

huge need in deep learning. For recent years, there have been

multiple approaches to reduce the gap between theory and

practical use in various perspectives. However, only a few can

achieve a real-time performance. With respect to our work, the

main goal is to detect and classify types of vehicles, so only

the networks dedicated for object detection stay in our focus.

For this purpose, we used a model of the Single Shot MultiBox

Detector (SSD) [11] with a backbone network of MobileNets

[10]. By splitting input into channels and convolving separate

filters for each channel, MobileNets achieves a significant

improvement in classification. Furthermore, that advancement
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Fig. 5. Architecture of a convolutional neural network for occlusion handling
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makes SSD outperform most of other networks with the

combination of multibox detectors which presents multiple-

scale visual features at in a single network

In this research, we retrain the SSD-MobileNets model

in self-generated video datasets. During training procedure,

the input image size is scaled down from a default size of

512×512 to 300×300 pixel as illustrated in Fig. 5. However,

there is a slight modification when the model is adopted

for our module of vehicle occlusion handling. Particularly,

because we detected blobs of obscured vehicles in prior steps,

we do not have to use a large size for input images. Also,

SSD-MobileNets has a capability of processing multi-scale

presentation of objects. Hence, when we integrate this model

into our proposed method, images of overlapping vehicles are

resized into 65× 65 pixel in the detection phase. By using a

smaller size for vehicles, our method reduces a great amount

of calculation in the model.

III. EXPERIMENTS AND DISCUSSION

For our problem, we use real-world video datasets previ-

ously collected on Pham Van Dong and Vo Van Kiet street, in

Ho Chi Minh City, Vietnam. These cameras are installed at a

height of 8−9 meter with an inclined angle of 12o−15o to the

horizontal direction as presented in [15]. Our dataset consists

of several 30 fps, 640 × 360 videos; each is of 10 minutes

long. The traffic scenes consist of multiple classes of objects:

pedestrian, motorbikes, 4-6 seat cars, small and large trucks,

buses. Attributes of three examined datasets namely PVD01,

PVD02, VVK01 are presented in Table II. In this method,

we only work on vehicles on defined types as mentioned in

Section II-B3. The proposed method has been implemented on

a configuration of Intel Core i5, 16GB of RAM. Our method

is implemented with Tensorflow and OpenCV on Python.

TABLE II
CHARACTERISTICS OF THREE EXPERIMENTED DATASETS

Dataset
Traffic

Frames Scenario Weather Lane type
Class Amount

PVD01
1 1413

21,236 morning
overcast,

sunny
mixed lanes for
bikes and cars

2 18
3 9

PVD02
2 872

14,975 mid-afternoon overcast
dedicated lanes

for cars3 17

VVK01
1 1001

16,298 mid-morning shadow
mixed lanes for
bikes and cars2 65

A. Training

We conducted two parts of training with support of a GPU.

First, for vehicle classification, we extracted a total of 14,013

vehicles’ images from 3 video datasets: PVD01, PVD02, and

VVK01. Ten corresponding features of these candidates are

then calculated and labelled. The proposed decision tree that

is proposed in this research is implemented with Toccls = 150,

a depth d = 6, a decay penalty ρ = 0.9, and a regularization

factor λ = 10. Then, our proposed decision tree is trained

on this set of data using Adam Stochastic Optimization with

initial learning rate 0.01, and batch size 16. The model has

been trained for three days with exactly 750 iterations.

Second, for occlusion handling, we labelled 7,919 vehicles

from 650 images that are extracted from 3 video datasets. The

network of SSD-MobileNets has been trained for a week with

exactly one million iterations.

B. Overall Evaluation

In this research, we focus on evaluating two metrics: de-

tection accuracy and processing time. In order to evaluate the

detection accuracy, we compare the number of in-class objects

predicted by three models (a traditional approach proposed

by Phan et al. [17], a fine-tunning model of a vanilla SSD-

MobileNets model [10], [11], and our proposed method) and

calculate the class-wise recall rate and precision rate using

the theory by Sokolova et all. [18]. For the processing speed,

we perform benchmark real-time performance of examined

methods without GPUs.

Table III, IV, and V show empirical results obtained from

the analysis of three methods on different datasets. It is appar-

ent that our proposed method is much more balanced in terms

of both accuracy and performance than the others. It does not

only achieves performance ratings that are on par with that of

Phan’s approach [17], but our method’s accuracy ratings are

also higher than those of SSD-MobileNets. With an average

of 26.13 fps in real-time performance, the performance of our

method is approximate 26.91 fps of Phan’s method, superior

to SSD-MobileNets’s average of 15.88 fps. In addition, most

of our precision-recall ratings are higher than those of SSD-

MobileNets. On the VVK01 dataset, in terms of precision and

recall, our predictions for Class 1 (the most populated class)

achieved the higher respective scores of 89.67% and 91.91%,

whilst SSD-MobileNet only came with respective ratings of

83.13% and 90.61%. For that same dataset, but with Class

2, our scores are at 81.69% and 89.23%, which are 2.28%

and 6.15% higher than those of the aforementioned method.

This result is achieved through reducing a great computational

TABLE III
COMPARISON OF RESULTS ON DATASET PVD01

Method Class TP TN FP FN Precision Recall Perf.

Phan et al. [17]
1 856 17 716 557 54.45% 60.58%

27.46
fps

2 11 862 9 7 55.00% 61.11%
3 6 867 5 3 54.55% 66.67%

SSD-MobileNet
[10], [11]

1 1271 23 163 142 88.63% 89.95%
16.05

fps
2 15 1279 4 3 78.95% 83.33%
3 8 1286 2 1 80.00% 88.89%

Proposed Method
1 1296 23 126 117 91.14% 91.72%

26.93
fps

2 16 1303 4 2 80.00% 88.89%
3 7 1312 3 2 70.00% 77.78%

TABLE IV
COMPARISON OF RESULTS ON DATASET PVD02

Method Class TP TN FP FN Precision Recall Perf.

Phan et al. [17]
2 563 10 384 309 59.45% 64.56% 26.43

fps3 10 563 8 7 55.56% 58.82%

SSD-MobileNet
[10], [11]

2 753 14 124 119 85.86% 86.35% 15.67
fps3 14 753 4 3 77.78% 82.35%

Proposed Method
2 790 15 107 82 88.07% 90.60% 24.98

fps3 15 790 4 2 78.95% 88.24%

TABLE V
COMPARISON OF RESULTS ON DATASET VVK01

Method Class TP TN FP FN Precision Recall Perf.

Phan et al. [17]
1 683 40 543 318 55.71% 68.23% 26.85

fps2 40 683 34 25 54.05% 61.54%

SSD-MobileNet
[10], [11]

1 907 54 184 94 83.13% 90.61% 15.92
fps2 54 907 14 11 79.41% 83.08%

Proposed Method
1 920 58 106 81 89.67% 91.91% 26.47

fps2 58 920 13 7 81.69% 89.23%
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Fig. 6. Classification results with three experimental datasets with an increase of traffic density (from left to right). Green, yellow, blue rectangles respectively
indicate vehicles in class 1, 2, 3. First row: dataset PVD01. Second row: dataset PVD02. Third row: dataset VVK01

amount on single-pipeline convolutional neural networks by

narrowing down examining regions with background subtrac-

tion and transferring isolated vehicle classification to neural

decision tree. However, the accuracy ratings for Class 3 in the

PVD01 dataset are pronouncedly the lowest recorded accuracy

duo in our prediction. However, in some minor situations,

noise regions that present in traffic scenes form unexpected

objects and slabs of foreground faults due to a variety of

external factors including walking or sleeping foreground

objects, illumination change, pixel camouflage. Fig. 6 presents

some examples of three conducted experiments.

IV. CONCLUSION

In this paper, we proposed a novel method for detecting

vehicles in daytime traffic scenes with a two-fold solution.

First, we construct a neural decision tree to classify isolated

vehicles. Next, obscured candidates are investigated on a

fine-tuning SSD-MobileNets model with a smaller resolution

of input image than the default structure. In this research,

conducted experiments show that our proposed method is not

only robust in multi-class vehicle classification with an average

recall rate of 88.81% but also achieve a real-time performance.

This scheme is capable of demonstrating a vision-based traffic

surveillance system on unexceptional computer configuration

when labelled training datasets are limited.
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