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ABSTRACT AdvancedDriver Assistance Systems (ADAS) are a collection of intelligent solutions integrated

into next-generation vehicles to assist in safe driving. When building ADAS systems, the main goals are that

they are stable, flexible, easy to maintain, and allow for error tracing. If a driving assistance algorithm is

designed to be implemented on one machine or in one model, there is a potential disadvantage that if one

component fails, then the entire system would stop. We work on modularizing the ADAS system to be

flexible to accommodate any changes or improvements based on up-to-date requirements. Using advanced

current edge (or network) devices, we propose a Detection-based Driving Assistance algorithm, which can

collaborate or integrate with an existing system in a vehicle. The core of any process is to ensure that the

system has a predictable level of functionality and that any misbehavior can be easily traced to the root cause.

The proposed system shows fast, real-time performance on edge devices with limited computing power.

INDEX TERMS Advanced driver-assistance systems (ADAS), autonomous driving, scene understanding,

situational awareness, edge device.

I. INTRODUCTION

Advanced Driver Assistance Systems are intelligent systems

located inside a vehicle that assist the human driver in various

ways. These systems present essential information about traf-

fic, closures, congestion of the roads ahead, congestion levels,

and suggested routes that avoid congestion. These systems

can also assess driver fatigue and distraction, and then pro-

vide precautionary warnings or assess driving performance

or make related recommendations. Advanced Driver Assis-

tance Systems have become critical technologies studied in

intelligent vehicles.

Most autonomous vehicle (AV) industry efforts focus on

advanced driver assistance systems since they are the first

step for fully self-driving cars. The reports [1], [2] show

critical reasons for car accidents. They found that human

factors are the primary reason or contributory element in 94%

of car accidents. Vehicles, environmental factors, and other

unknown reasons are responsible for 2% of crashes each.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

The three primary human factors most frequently cited in

the study are speeding, inattentiveness, and improper lookout.

Most of them can be avoided with ADAS. The role of ADAS

is to prevent deaths and injuries by reducing the number of car

accidents and reducing the severity of accidents that cannot be

avoided. Essential safety-critical ADAS applications include

pedestrian and vehicle detection/avoidance, lane departure

warnings/corrections, and traffic light and traffic sign recog-

nition. [3] shows that an ADAS system can have a crash

avoidance effectiveness ranging from 9.3% to 33.3% for light

vehicles [4], [5], while forward collision warnings (FCWs)

may be able to prevent 23% to 50% of light vehicle rear-end

crashes [6]. Moreover, [7] summarizes the effectiveness of

twenty ADAS technologies of both light vehicles and heavy

trucks. These lifesaving systems are vital to ensuring the

success of ADAS applications, incorporating the latest inter-

face standards, and running multiple vision-based algorithms

to support real-time multimedia, vision co-processing, and

sensor fusion subsystems.

These ADAS functions are usually based on one front

camera or a front stereo-vision camera. Sometimes the
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FIGURE 1. Structure of ADAS.

camera information is supplemented with information from

other sensors, like light detection and ranging (LIDAR) or

radio detection and ranging (RADAR). Against the front

windshield, ADAS cameras are typically located inside the

car behind the central rearview mirror. The ADAS camera

field of view is located in the wiper area to keep the glass in

front of the camera as clean as possible. Sometimes, RADAR

sensing, vision sensing, and data fusion are combined in a

single module.

This paper proposes ADAS using information obtained

from a mono color camera and cluster edge devices, as shown

in Fig. 1. The intelligent computation of ADAS is imple-

mented using Machine Learning (ML) software that makes

decisions based on critical observations of objects in sur-

roundings. The cluster of edge devices operates the model,

including traffic lights and signs, road markings and lanes,

vehicles and pedestrians, synchronization, and scenarios.

Then, the final caution appears on display.

We experimented with optimizing performance in the test-

ing stage using the Korean dataset provided by KATECH

(Korea Automotive Technology Institute) [8], [9] by showing

the time required for processing critical scenarios in ADAS.

There are several key contributions of this work:

• We implement a modularized system that can flexibly

implement any change and any improvement based on

up-to-date requirements.

• The proposed thread-based approach demonstrably

maintains stable operation because the crash or failure of

one thread-based module cannot affect the performance

of other parallel modules. This approach is adopted

because any process that affects human safetymust guar-

antee that the system has a predictable operational level,

and that any malfunctions can be effortlessly traced to

the root cause.

• The work shows very acceptable real-time performance

on edge devices with limited computational power.

In terms of the physical world’s specific design of both

machines and technology, Operation Technology (OT) is the

physical machines themselves and the systems that control,

monitor, and interface with them. In the OT, the Opera-

tional Level is the manufacturing operations management,

which manages production workflow. An autonomous car

must run continuously to capture any action outside the

TABLE 1. Hardware comparison of Jetson modules with Titan X.

vehicle. If the vehicle process included sending and receiv-

ing cautions from the server, it would be dependent on the

connection among many vehicles. Therefore, it would be

problematic if there is any problem with the connection.

We need the AI embedded and edge devices to isolable

process the signal from the sensors on the vehicle. It should

be emphasized that the satisfied requirements for real-world

processing are in high demand, especially on embedded com-

putational devices or edge device. Manufacturing companies

provide various application-specific integrated circuits, such

as field-programmable gate arrays (FPGAs), digital signal

processors (DSPs), or graphics processing units (GPUs).

In this study, the proposed method has been implemented and

tested on an NVIDIA GPU-based computer and on NVIDIA

embedded computing platforms of the Jetson TX2 [10], Jet-

son Xavier NX [11], and Jetson AGX Xavier [12]. The infor-

mation for Jetson devices is shown in Table. 1.

The structure of this paper is as follows. Section II presents

the related works. Section III presents the system archi-

tecture and describes each stage of the system. Next, the

experiments and results are presented in Section IV. Finally,

conclusions and directions for future work are discussed in

Section V.

II. RELATED WORKS

In this section, we review common approach ADAS solu-

tions and discuss their advantages and disadvantages. After

describing the current boundaries, we demonstrate our strat-

egy to improve these limitations.

A. DRIVING ASSISTANCE ON ONE MACHINE

The procedure mainly focuses on building a model

that can work with many tasks while maintaining high

accuracy. For further details, the model aims to learn

better representations through information shared among

multiple tasks. For illustration, A CNN-based multi-task
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TABLE 2. Definition of classes in system.

learning method mainly performs convolutional sharing of

the network structure. MultiNet [13] completes the three

scene perception tasks of scene classification, object detec-

tion, and segmentation of the driving area simultaneously

by sharing an encoder and three independent decoders.

DLT-Net [14] inherits the encoder-decoder structure and

contributively constructs context tensors between sub-task

decoders to share designated information among tasks. More-

over, [15] proposes one encoder for feature extraction and

three decoders to handle the specific tasks. Meanwhile,

it proposes a novel loss function to constrain the lane line

to the outer contour of the lane area so that they will overlap

geometrically. More importantly, the training paradigm of a

multi-task model also requires very careful consideration.

Reference [16] states that the joint training is appropriate

and beneficial only when all those tasks are indeed related;

otherwise, it is necessary to adopt alternating optimization

strategies.

However, in [17] and [18], the multi-task models have

many issues: they require significantly more computational

power to obtain higher performance and accuracy. Compared

with a single-task model, they achieve low accuracy because

many tasks using only one feature extractor. Broadly, it is

very difficult to simultaneously train many tasks and get a

better result, This may be because the tasks must be learned

at different rates or because one task may dominate the

learning leading to poor performance on other tasks. For

keeping good outcomes without losing the performance of

any process, one solution is to apply an individual model

for each task. The level of performance demanded by ADAS

platforms will require increasingly larger and more powerful

GPUs, thus impacting the manufacturing bills of materials for

autonomous vehicles. To mitigate this expense, platform ven-

dors have sought to increase the value and functionality of the

GPU by using it to performmultiple workloads in the vehicle.

Virtualized GPUs have obvious applicability for autonomous

vehicles and ADAS scenarios, as a single GPU can power

multiple applications, from the visualization of maps and

operations of entertainment consoles to the processing of

environmental sensor data to identify roadway obstacles.

However, enabling multiple virtual operations from a single

GPU in automotive applications is only safe and effective if

the GPU has rock-solid support for hardware-accelerated vir-

tualization. Virtualization software is most dependable when

hardware enforces entirely separate managed address spaces

for each virtual instance and enables the restart, or flushing,

of a single instance that is not operating correctly. This work-

load isolation is key to allowing the shared use of the GPU

while keeping critical software, such as driver-assistance sys-

tems, from being corrupted by any other process.

ADAS running on one shared machine has many issues.

First, processing many tasks on onemachine may lead to high

computation requirements. Also, when we upgrade each part

of ADAS, the whole system has to be updated. In a dangerous

scenario, if a single task fails, it may lead to the crash of

the whole system. Broadly speaking, it is hard to deploy a

model that does not affect other models running on the same

machine.

B. DEPLOYMENT ON EDGE COMPUTING

To keep satisfactory results without losing the performance of

any operation and processing with low computation require-

ments, we can use Jetson clusters. In [19], they mention the

embedded edge computing by deploying a deep model on

Jetson embedded boards. They compare the outcome with the

computer simulation and get a comparable result with high-

speed performance. For additional information, [20] notes

that the core benefits of deploying the trained machine learn-

ing (ML) model on edge devices include: (1) The edge hard-

ware is more energy-efficient since it requires fewer energy

resources than computer and server machines. (2) Edge-

based inference hardware costs considerably less than other

computational hardware such as field-programmable gate

arrays (FPGA) and GPUs. In our paper, we deploy and run

all modules of the ADAS on the Jetson cluster to keep the

benefit of edge computing while obtaining good outcomes.

III. PROPOSED METHOD

This section describes each module we use in the system,

including traffic lights and signs, road markings and lanes,

vehicles and pedestrians, synchronization, and scenarios.

Each module has a specific mission and provides impor-

tant information for driving assistance. For a more detailed

description of objects we consider in this system, Table. 2

shows a list of the considered objects from the parent to child

leaves.
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FIGURE 2. The framework of the system.

FIGURE 3. Different stages of traffic lights, with or without arrow.

A. PIPELINE OF SYSTEM

The overall details of the system pipeline are shown in Fig. 2.

In the Main process, five threads have the job of keeping the

system stable and running.

1) From the beginning, the frame from dashcam transfers

to the Jetson AGX and is responsible for the primary

process. The Signal thread’s task is to connect and

receive the buffer frame from a dashcam. After getting

the input frame, the synchronizing thread does the job

of cropping the image to a specific ratio, sending it to

the three threads for subsequent processing beforewait-

ing for the threads to finish. If the connection is down,

it will reconnect again to keep the system working.

2) The three threads, including the Upper Thread, Middle

Thread, and Lower Thread, correspond with the Light

and Sign module, Vehicle and Pedestrian module, and

Road marking and Lane modules, respectively. Each of

the three threads sends the suitably cropped frame to the

proper Jetson edge devices for processing and waits for

the information to return. If the information or result is

not sent back in time, the thread will be terminated, and

a new thread will be created to and the input signal is

resent.

FIGURE 4. Display of ADAS.

3) After all the threads successfully return, the Synchro-

nization Thread combines and sends all the information

with the same time frame to the scenarios module to

investigate the situation and show the assistance infor-

mation. Finally, all the assistance information appears

in the display of the dashboard in a vehicle.

B. TRAFFIC LIGHT AND SIGN MODULE

The signal module covers the detection work for traffic lights

and traffic signs. We only use a one-stage detector to make

sure it runs in real-time. We do not need a complex or large

model because the traffic light and traffic sign have a similar

sample inmost cases, and do not widely vary, like a pedestrian

or car. The model we use is Scaled-YOLOv4 [21]. Likewise,

we have used the TensorRT [22] inference optimizer and

runner for better optimization and further reduce the infer-

ence time. We converted the scaled-YOLOv4 for model sim-

plification and FP16 acceleration using TensorRT network

definition APIs, which are based on an up-to-date version

of the operating system of Jetson devices. For more detail,

the model is first implemented in PyTorch. We train and

export a weights file from the model. Afterward, we define
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FIGURE 5. Different types of traffic signs. The first row shows Traffic
Sign – Speed, the second to the seventh row show the Traffic sign – Else.

the network using TensorRT, load the extracted weights file,

and do inference tasks. The list of traffic lights and traffics

sign classes are shown in Fig. 3 and Fig. 5. The input frame

has the shape of
{

wf , hf , cf
}

which represent the width,

height, and number of channels, respectively. For thismodule,

we predefine three upper regions:

ROIu = {roil, roim, roir } (1)

with the corresponding factor ul, um, ur where ul + um +

ur = 1. Each region has a height that is equal to that of

the sent cropped image, and the width is calculated by wi =

ui ∗ wf . The priority of the region is defined by roim >

roir > roil , which means that the middle region is the most

important part, the second is on the right, and the final is on

the left. Each bounding box has a value that that matches that

of Pascal VOC [23] format bbox = {xmin, ymin, xmax , ymax}.

We use the three regions above to calculate the priority of

traffic lights and traffic signs. Using the priority, we ascertain

the leading traffic light or traffic sign for the assisted vehicle.

In Fig. 4, the red, green, and blue bounding boxes represent

the regions roil, roim, roir , respectively. Moreover, we notate

that the point p is inside the bounding box, represented by the

formula: p ∈ bbox

1) TRAFFIC LIGHT RECOGNITION

We only focus on non-occluded instances of traffic light

detection to reduce ambiguities. All occluded traffic lights are

removed from the training set and validation set to achieve

this goal. In some cases, the deep learning networks still

detect traffic lights on the boundaries of images. Our system

uses two policies to decide whether or not a considered traffic

light is irrelevant: In the case of the top boundary, more than

half of the traffic light bulbs must be visible. When candidate

signals are on the left or right edges of the images, all of the

bulbs must be visible.

While in an intersection or roundabout, many traffic lights

are detected and recognized with different stages. The issue

is which one provides a signal meant for our car. We address

this issue and increase recognition performance by adjusting

the positions of ROIs based on individual image analysis.

By simplifying [24], we identify the region-of-interest (ROI)

containing the traffic light in each frame using the vehicular

pose and a prior traffic light pose. As shown in Fig. 4, the

order of precedence is green, blue, and red. In each ROI, the

priority is above to below.

Bulight =

{

bboxulight,1, bbox
u
light,2, . . .

}

(2)

which have the center point
{

culight,1, c
u
light,2, . . .

}

with

culight,i =

{

xulight,c,i, y
u
light,c,i

}

. We find the top priority of

traffic light bounding box by these conditions: the bounding

box belongs to the upper region when culight,i ∈ bboxuroij and

roij ∈ {roil, roim, roir }.

bboxulight,i > bboxulight,j

{

roii > roij

yulight,i < yulight,j with roii = roij

(3)

Therefore, the top priority traffic light, which is considered

the current one for the vehicle, is:

bboxulight,top = argmax Bulight (4)

2) TRAFFIC SIGN RECOGNITION

Traffic signs have different structures and forms in different

countries, the essential types of traffic signs are prohibitory,

danger, mandatory, and text-based signs. The prohibitory,

dangerous, or mandatory signs often have standard shapes,

such as circles, triangles, and rectangles, and often have

standard colors, such as red, blue, and yellow. The text-based

signs usually do not have fixed shapes and contain informa-

tive text. Based on the KATECH dataset, we only consider

the Traffic Sign Else class (including danger class, mandatory

class, and prohibitory class) and the Traffic Sign Speed class:

• Traffic sign - Speed class: include the speed limited

in range. We take the localized sign from the detec-

tion result and recognize and classify it (as shown in

Fig. 5 - (a))

• Traffic sign - Else class: is designed to provide warnings

vividly and instantly, including prohibitory or manda-

tory restrictions (as shown in Fig. 5 - (b))

In the traffic sign part, we only consider the main traffic sign

speed for the vehicle because it is used for the post process

in The Scenario Module. After detection, we have the list of

bounding boxes

Buspeed =

{

bboxuspeed,1, bbox
u
speed,2, . . .

}

(5)

Buelse =
{

bboxuelse,1, bbox
u
else,2, . . .

}

(6)
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FIGURE 6. Visualization of lane detection.

which have the center point {cuspeed,1, c
u
speed,2, . . .} with

cuspeed,i = {xuspeed,c,i, y
u
speed,c,i}. We find the top priority of the

traffic light bounding box by these conditions: the bounding

box belongs to the region if cuspeed,i in bbox
u
roij

and roij ∈

{roim, roir }

bboxuspeed,i>bboxuspeed,j

{

roii>roij

yuspeed,i<yuspeed,j with roii=roij

(7)

Therefore, the top priority traffic sign - speed, which is con-

sidered as the current bounding speed of the vehicle, is:

bboxuspeed, top = argmax Buspeed (8)

Because traffic sign – speed contains only digits, we use

LPRNet [25] for fast Optical Character Recognition (OCR)

and get the main speed limit value from the traffic

sign – speed, which is

OCR
(

bboxuspeed, top

)

(9)

C. VEHICLE AND PEDESTRIAN MODULE

Automotive standards need to be followed for any system

to obtain enhanced stability, predictability, and reliability.

The most important priority is that the ADAS be safe and

secure. Since the misbehavior of systems in a vehicle may

result in hazardous situations to the passengers and other

vehicles or pedestrians on the road, care should be taken

to ensure system reliability. We use the TensorRT version

of scaled-YOLOv4 to detect pedestrians and vehicles in the

detection, which the same version as one in traffic light and

sign module. We simplify the model in the same process

as the method using in the Traffic Light and Sign module.

The processing takes on 2
3
of an image from the bottom

up. Based on [26], reducing the computational complexity

reduces the search space instead of limiting the window scale

and position. Let us suppose that unnecessary portions of

the image, including the image background and the areas of

the scene where objects of interest are not expected, can be

excluded from the search space. In that case, there will be

considerable savings in computational cost. After detection,

we get the set of bounding boxes: Bmcar , B
m
bus, B

m
truck , B

m
motor ,

Bmpedestrian, and B
m
bike.

D. ROAD SURFACE MARKING AND LANE MODULE

1) LANE DETECTION

Reference [27] indicates that the lane detection algorithm

must ensure good reliability, real-time operation, and robust-

ness to meet practical requirements. With the development of

autonomous driving technology, we need a lot of actual tests

on the road. At the same time, a considerable overhead of

resources will be consumed, and there are particular dangers

to slow or erroneous computation.

We only keep 1
2
image from below to extract the result, and

we use Ultra-Fast Structure-aware Deep Lane Detection [28]

to get the lane. We get the list of lanes

L = {l1, l2, . . .} (10)

in which li =
{

pi1, p
i
2, . . .

}

. We find the ego lane to determine

the main roadmarking in the post process. Ego-lane detection

detects the current lane and its boundary and ismainly applied

online so that autonomously driving cars can stay in the cur-

rent lane with the aid of lane departure detection. The white

segment is drawn in Fig. 6, and the purple cover is the regular

lane. To find the ego-lane, we find two lines nearest the screen

centerline (the orange line in Fig. 4) on the left and right. The

variable for the screen centerline:

lsc (x) = msc × x + csc (11)

The position of a point is

pospi = lsc (xi) =











< 0 on the left

0 on the cente

> 0 on the right

(12)

The number of points on the left is:

numpl =

n
∑

i

pospi < 0 (13)

and on the right is:

numpr =

n
∑

i

pospi > 0 (14)

To find whether the line is on the left or right of the screen

centerline, we use:

posli

{

left if numpl > numpr
right if numpl > numpr

(15)

To find the nearest distance, we use the Hausdorff distance:

dH (li, lsc)

= max

{

max
pi∈li

{

min
psc∈lsc

d
(

pi, psc
)

}

, max
psc∈lsc

{

min
pi∈li

d
(

pi, psc
)

}}

(16)

The nearest distance on the left is argmin dH
(

li,left , lsc
)

,

and the nearest distance on the right is argmin dH
(

li,right , lsc
)

.
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FIGURE 7. Different types of road marks.

The ego lane is

Lego =

{

largmin dH (li,left ,lsc), largmin dH (li,right ,lsc)

}

=
{

lleft,sc, lright,sc
}

(17)

2) ROAD MARKING RECOGNITION

Based on [29], to avoid the conflict of arrows in traffic

lights with information on the road, we only consider five

main directions of a traffic arrow, including Straight, Left,

Right, Straight Left, Straight Right (as shown in Fig. 8).

In addition, we add two more. These are U-turn and Else.

Traffic arrow – Else means that other directions are different

from the above arrows. Moreover, we consider the other

road mark, such as crosswalk, number, and character (as

shown in Fig. 7). The ‘‘Road mark - Number’’ shows the

speed limit of the current lane. Using the lane informa-

tion and the number given by OCR, the system can show

the speed needed for this lane. After getting the detection,

we get the detections: Bunumber , B
u
character , and Bucrosswalk

which have the center point
{

clnumber,1, c
l
number,2, . . .

}

with clnumber,i =

{

x lnumber,c,i, y
l
number,c,i

}

, and the

point
{

clcharacter,1, c
l
character,2, . . .

}

with clcharacter,i =
{

x lcharacter,c,i, y
l
character,c,i

}

. We only consider the post-

process for Number and Character Road Markings. We filter

these bounding boxes and keep processes belonging to the

ego lane, Lego, by finding the center of the bounding box of

the polygon created by two lines of the ego lane. The list of

points of the polygon is:

Pego =

{

plleft,sc,1, p
l
left,sc,2, . . . , p

l
right,sc,1, p

l
eight,sc,1, . . .

}

(18)

The list of bounding boxes that remain after filtering are:

Blnumber,ego =

{

bboxunumber

∣

∣

∣
clnumber ∈ Pego

}

(19)

Blcharacter,ego =

{

bboxucharacter

∣

∣

∣
clcharacter ∈ Pego

}

(20)

We find the top priority of the Number and Character by these

conditions:

bbox lnumber,i > bbox lnumber,j

where ylnumber,c,i > ylnumber,c,j (21)

FIGURE 8. Different types of road mark arrows.

bbox lcharacter,i > bbox lcharacter,j

where ylcharacter,c,i > ylcharacter,c,j (22)

Therefore, the top priority is given by the pair:

bbox lnumber, top = max Blnumber,ego (23)

bbox lcharacter, top = max Blcharacter,ego (24)

We next consider the instruction from ‘‘Road mark - Charac-

ter.’’ The letters and words from each country are different,

so using the individual modules can help change, we choose

to show the closet Character on the panel.

E. SYNCHRONIZATION MODULE

Elaborating on the content of Fig. 2, we implement our

proposed solution from the video input in a multi-threaded

CPU-, GPU-utilizingmanner. As the fourmodulesmentioned

above are mostly independent of one another, we take advan-

tage of the current hardware development for Internet of

Things (IoT) devices with both multi-core CPU and CUDA-

compatible GPU support and propose a thread-level paral-

lelism framework [30]. Our approach best performs with at

least five threads and a GPU, where each thread processes

inputs continuously throughout the given frame sequence.

From the primary device (Jetson AGX), we deploy Synchro-

nization Threads for receiving and sending signals for all

necessary components of the solution (other Jetson devices)

and deploy the other four threads for continuous processing.

• Thread #1 (Signal Thread): This thread is responsible

for receiving the input frame. This thread has to make

sure that the connection with the camera is stable and

online. If there is an error in the connection or buffer

frame from the camera, this thread reconnects and waits

for the signal.
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• Thread #2 (Synchronization Thread): This thread is

responsible for sending and receiving the crop frame and

results from other threads. It is the most crucial thread

because it can terminate and create a new thread. The

thread must keep the time frame in order and the results

corresponding with this time frame. After receiving the

input frame, the thread crops it and sends it to the other

threads, and then it waits for the results. After getting a

result back, the thread packs it with the corresponding

time frame and sends it to the Scenarios module in the

Jetson TX2. If one of the modules does not send the

result on time, the thread calls the primary process to

terminate the non-responsive thread and creates a new

one.

• Thread #3 (Upper Thread): This thread is responsible

for sending and receiving the Light and Sign module

result from the Jetson NX. The edge device performs

the object detection for the traffic light and traffic sign

by running the traffic light and sign module (mentioned

above). Finally, the result is sent back to the edge device

primary process, and the upper thread handles it and

sends it to the Synchronization Thread.

• Thread #4 (Middle Thread): This thread is responsible

for sending and receiving the result from the Vehicle

and Pedestrian module from the Jetson AGX. The edge

device performs object detection for cars, buses, trucks,

and pedestrians by running the vehicle and pedestrian

module (mentioned above). Finally, the result is sent

back to the edge device primary process, and the middle

thread handles it and sends it to the Synchronization

Thread.

• Thread #5 (Lower Thread): This thread is responsi-

ble for sending and receiving the result of the Road

Marking and Lane module from the Jetson AGX. The

edge device performs both lane detection and road

marking detection. Finally, the result is sent back

to the edge device primary process, and the lower

thread handles it and sends it to the Synchronization

Thread.

In case of adding a newmodule in the future, a new thread can

be added to the current threads, and the Synchronize Thread

would handle it.

F. SCENARIOS MODULE

This section shows the work of the scenarios module on the

Jetson TX2. The module processes all the information and

displays it along with the information and the assistance sig-

nal [31], [32]. The scenarios can be updated and customized

according to the regulations of each country. From Fig. 4, the

display of ADAS has five components, and each of them has

the result from this module.

• Direction panel: The panel shows the current direction

of the lane based on the default or the road marking

arrow on the ego lane (shown in Fig. 8).

• Road marking character panel: The panel shows any

words or characters in the ego lane. If we have many of

them, it shows the lowest and closest word in the ego

lane.

• Traffic light panel: This panel shows the current traffic

light. The current light governing the vehicle is the result

of the traffic light module process.

• Speed limit panel: The panel shows the speed limit.

The default value is 60 kph, which is the speed limit for

vehicles on most city streets and rural two-lane roads in

Korea. The value is changed based on the Traffic Light

and Sign module and Road Marking and Lane module.

We show the speed limit with kilometer per hour (km/h)

units.

• Caution panel: The panel shows the assistance message

from the ADAS. There are three main caution mes-

sages: NORMAL, WARNING, DANGER. The NOR-

MAL indicator means that the driving condition is safe.

The WARNING indicator means that the driver must

consider slowing down and pay more attention to obsta-

cles or objects on the road. The DANGER indicator

means that the driver should be ready to brake, and

potential collisions and danger lie in front of the car. The

danger signal indicates danger for the driver, pedestri-

ans, or other drivers.

We prioritize caution: the first priority is to treat the pedes-

trian with caution and the second is to treat the vehicle with

caution. The traffic light and traffic sign serve as supporting

pieces of information that encourage driver caution.

1) PEDESTRIAN CAUTION

The scenarios module always initiates before the detection of

any case of a pedestrian. For many cases, the caution signal

regarding a pedestrian is stop. For example, such cases could

be the pedestrian in the crosswalk in front of the car, or the

pedestrian in any lane (especially, ego lane.). The way to

determine the pedestrian state is by using Intersection over

Union (IoU) for object detection. The equations to check the

pedestrian’s state in front of a car are

IoU
(

bboxmpedestrian,i, bbox
l
crosswalk,j

)

= bboxmpedestrian,i ∩ bbox lcrosswalk,j (25)

IoU
(

bboxmbike,i, bbox
l
crosswalk,j

)

= bboxmbike,i ∩ bbox lcrosswalk,j (26)

IoU
(

bboxmpedestrian,i,Lego

)

= bboxmpedestrian,i ∩ Lego (27)

IoU
(

bboxmbike,i,Lego
)

= bboxmbike,i ∩ Lego (28)

For example, in the case of Fig. 9 - (a)(b), the pedestrians go

over the crosswalk, (25) has a value greater than zero. In the

case of Fig. 9 - (c), the bike goes over the ego lane, and the
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FIGURE 9. Specific cases. (a)-(c) The pedestrians are in crosswalks. (d) The pedestrian is in the ego-lane. (e) A motorbike is in front of the
vehicle (f)-(h) Multiple and different types of traffic lights. (i) The motorbike is parked on the pavement. (k)-(l) The bus suddenly changes lanes.

value of (26) is greater than zero. In the case of Fig. 9 - (d),

the bike goes over the ego lane, and the value (27) is greater

than zero. If one of these IoUs has a value greater than zero,

the caution is DANGER. If the IoU with the lane (not ego-

lane, (29) and (30) are still zero):

IoU
(

bboxmpedestrian,i,L
)

= bboxmpedestrian,i ∩ L (29)

IoU
(

bboxmbike,i,L
)

= bboxmbike,i ∩ L (30)

If the case (29) has a value more than zero (as shown in

Fig. 9 - (j)), the caution is WARNING.

2) VEHICLE CAUTION

For vehicle caution, the top priority is motorbike, car, bus,

and the last is truck. We have a union of detection in vehicle

detection.

Bmvehicle = Bmmotor ∪ Bmcar ∪ Bmbus ∪ Bmtruck (31)

The equation to check the position of the vehicle is:

posvehicle,i =
ymvehicle,i

hf
(32)

The caution is WARNING whenever any vehicle on the ego

lane in more than 1
2
hf (Fig. 9 - (k)). And the caution is

DANGERwhenever any vehicle on the ego lane in more than
2
3
hf (as shown in Fig. 9 - (l)).

IV. EXPERIMENT RESULT

In this section, we evaluate the performance in analyzing

some scenarios while driving to show the effectiveness of the

proposed ADAS. In addition to showing caution messages in

the display, we show the speed performance of the selected

model running on Jetson devices.

A. EXPERIMENTAL SETTING

The experiment using the KATECH dataset contains more

than 160,000 images for the training, validation, and test-

ing sets. The image resolutions in the dataset are 1280 ×

720 pixels, 1280×672 pixels (1280), or 1920 × 1080 pixels.

The times of the captured images are daytime, dawn, and

nighttime. Moreover, the dataset includes sunny, overcast,

and rainy weather. We set up three Jetson AGX Xavier

devices, one Jetson Xavier NX device, and one Jetson TX2

device. The input resolutionwe usedwas 1280, and the output

is displayed at the end. We labeled 10000 images for the

scenario test case. The label is based on four panels in the

final display. Six direction types are labeled for the Direction

panel, including Straight, Left, Right, Straight-Left, Straight-

Right, andU-turn. For the Traffic Light panel, the varieties are

shown in Fig. 3, including Red, Yellow, Green, Red Arrow,

and Green Arrow. For the Speed Limit panel, we labeled it in

the range of 30 to 150 kph. For the Caution Message panel,

we labeled for Driving messages (including Safety, Warning,
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FIGURE 10. Visualization of scenarios in the series of frames.

Danger) and Icon message (including Vehicle, Cycle, and

Pedestrian).

B. CASE SCENARIOS

Fig. 10 shows some scenarios on the KATECH dataset that

we have highlighted:

In the case of Fig. 10 - (a), the pedestrian is crossing

the street without observation. The ADAS detects and alerts

the driver about the pedestrian in the crosswalk with the

WARNING signal. In the third image, the vehicle is near the

walker, so the ADAS alerts DANGER and asks the driver to

be ready to stop. In the last image, while the pedestrian is on
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TABLE 3. Accuracy of panels.

TABLE 4. Accuracy (mAP) comparison of traffic object detection.

the sidewalk, the caution panel returns toWARNING, and the

vehicle continues to drive without the alert DANGER.

In the case of Fig. 10 - (b), the vehicle can turn left with

a speed limit of 50 km/h. However, when the left turn is

ongoing, the ADAS detects pedestrians on the crosswalk in

front, the WARNING caution is displayed, and the vehicle

has to slow down. Then, with the crosswalk near the car, the

caution DANGER is displayed, and it waits for all pedestrians

to cross the street, then it turns to the NORMAL indicator.

In Fig. 10 - (c), the ADAS detects one motorbike near the

vehicle and in the ego-lane and the WARNING caution is

shown. Then, the NORMAL indicator is displayed when the

motorbike is at a safe distance from the vehicle.

In Fig. 10 - (d), theWARNING caution alerts the driver that

the red light is on, and that the vehicle must slow down and

stop. Nevertheless, the NORMAL indicator allows vehicle

to safely run while reaching the intersection when the green

light is on.

In Fig. 10 - (e), a dangerous situation is presented because

the bus changes lanes too fast to reach the bus stop. The

ADAS alerts DANGER for the driver to be ready to stop. The

caution indicator returns to NORMAL again after the bus is

at the bus stop.

TABLE 5. Speed performance of the system.

TABLE 6. Comparison of devices power consumption.

Finally, the system’s accuracy on the scenario case is

shown in Table. 3. Most of the number is higher than 90,

proving that the system runs well in most cases.

C. PERFORMANCE

Besides the accuracy in the case scenario, we measure the

accuracy in traffic object detection among our system with

the one multi-task model, as shown in Table. 4. As can be

seen, the DLT-Net and YOLOP have lower mAP than Ours

because both models have to share the feature extractor with

other tasks, and the training step for the multi-task model is

more complicated than the specialized model.

Because these algorithms run in independent modules on

hardware with limited power, the real-time performance of

the systemmust bemaintained.Wefind that the proposed sys-

tem satisfies real-time reactions to the outside environment.

Table. 5 shows the processing time of each casewhile using or

neglecting to use eachmodule in the system. In the meantime,

the Table. 6 shows the recommended system power for each

case. Therefore, in the case of running all modules in one

machine with one or three Titan X GPUs, the energy required

for it is higher than for the group of Jetson devices. Addition-

ally, the stack of models may demand more memory than one

Titan X’s available memory, which means we need more than

one GPU and more power consumption in one system.

V. CONCLUSION AND FUTUREWORK

This paper proposes a modular system that can flexibly

implement any changes or improvements based on updated

requirements. Herein, experiments show that the proposed

ADAS maintains stability and that a crash in one module

cannot affect the performance of others. The core tenet of

any process that affects human safety is to ensure that the

system has a predictable level of performance and that any

misbehavior can be easily traced to the root cause. The

work shows good execution speed with proper timing on
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edge devices. In the future, we will upgrade the module to

analyze more traffic rules and attempt to allow the ADAS to

transact with the physical driving system, by implementing

emergency braking, for instance, to improve the level of the

autonomous vehicle system.
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